Browsing by Subject "SOM turnover time"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Pathways of C and N turnover in soil under elevated atmospheric CO2(2008) Dorodnikov, Maxim; Fangmeier, AndreasIn the present thesis the C and N transformations in soil as influenced by indirect effect of elevated atmospheric CO2, soil physical structure and land use change were studied in four laboratory experiments using stable-C and N isotopes, as well as soil microbiological techniques. To test the interrelations between chemical and biological characteristics of soil organic matter (SOM) as affected by land use change and elevated atmospheric CO2 an approach for SOM partitioning based on its thermal stability was chosen. In the first experiment C isotopic composition of soils subjected to C3-C4 vegetation change (grassland to Miscanthus x gigantheus, respectively) was used for the estimation of C turnover in SOM pools. In the 2nd (Free Air CO2 Enrichment ? FACE ? Hohenheim) and 3rd (FACE Braunschweig) experiments CO2 applied for FACE was strongly depleted in 13C and thus provided an opportunity to study C turnover in SOM based on its δ13C value. Simultaneous use of 15N labeled fertilizers allowed N turnover to be studied (in the 2nd experiment). We hypothesized that the biological availability of SOM pools expressed as the mean residence time (MRT) of C or N is inversely proportional to their thermal stability. Soil samples were analysed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). According to differential weight losses between 20 and 1000 °C (dTG) and energy release or consumption (DSC), SOM pools (4 to 5 depending on experiment) with increasing thermal stability were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ13C and δ15N by IRMS. For all three experiments the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. A possible explanation for the inability of thermal oxidation for isolating SOM pools of contrasting turnover times is that the fractionation of SOM pools according to their thermal stability is close to chemical separation. In turn, it was found that chemical separations of SOM failed to isolate the SOM pools of different turnover time because different biochemical plant components (cellulose, lignin) are decomposed in a wide temperature range. Individual components of plant residues may be directly incorporated into, or even mixed with the thermal stable SOM pools and will so mask low turnover rates of these pools. To evaluate the interactions between availability of SOM for decomposition by soil microbial biomass (biological characteristic) under elevated atmospheric CO2 and protection of SOM due to the occlusion within aggregates of different sizes (physical property, responsible for SOM sequestration) we measured the activity of microbial biomass (indicated by enzyme activities) and growth strategies of soil microorganisms (fast- vs. slow growing organisms) in isolated macro- and microaggregates. The contribution of fast (r-strategists) and slowly growing microorganisms (K-strategists) in microbial communities was estimated by the kinetics of the CO2 emission from bulk soil and aggregates amended with glucose and nutrients (Substrate Induced Growth Respiration method). Although Corg and total Cmic were unaffected by elevated CO2, maximal specific growth rates were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Thus, we conclude that elevated atmospheric CO2 stimulated the r-selected microorganisms. Such an increase in r-selected microorganisms could increase C turnover in terrestrial ecosystems in a future elevated atmospheric CO2 environment. The activities of β-glucosidase, phosphatase and sulphatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, however, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates an increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. At the same time, less chitinase activity in microaggregates underlined microaggregate stability and the difficulties for fungi hyphae penetrating them. We conclude that quantitative and qualitative changes of C input by plants into the soil at elevated CO2 affect microbial community functioning, but not its total content. Future studies should therefore focus more on the changes of functions and activities, but less on the pools. In conclusion, elevated CO2 concentrations in the atmosphere along with soil physical structure have a pronounced effect on qualitative but not quantitative changes in C and N transformations in soil under agricultural ecosystem. The physical parameters of soil such as aggregation correlate more with biological availability of SOM than the chemical properties of soil organic materials. The increase of soil microbial activity under elevated CO2 detected especially in soil microaggregates, which are supposed to be responsible for SOM preservation, prejudice sequestration of C in agroecosystems affected by elevated atmospheric CO2.