Browsing by Subject "Soil contamination"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Arbuscular mycorrhizal fungi-based bioremediation of mercury: insights from zinc and cadmium transporter studies(2023) Guo, Yaqin; Martin, Konrad; Hrynkiewicz, Katarzyna; Rasche, Frank; Guo, Y.; Faculty of Agricultural Sciences, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany; Martin, K.; Faculty of Agricultural Sciences, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany; Hrynkiewicz, K.; Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland; Rasche, F.; Faculty of Agricultural Sciences, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, GermanyPhytoremediation, a sustainable approach for rehabilitating mercury (Hg)-contaminated soils, can be enhanced by arbuscular mycorrhizal (AM) fungi, which promote plant growth and metal uptake, including Hg, in contaminated soils. Hg, despite lacking a biological function in plants, can be absorbed and translocated using Zn and/or Cd transporters, as these elements belong to the same group in the periodic table (12/2B). In fact, the specific transporters of Hg in plant roots remain unknown. This study is therefore to provide fundamental insights into the prospect to remediate Hg-contaminated soils, with a focus on the role of AM fungi. The hypothesis posits that Hg uptake in plants may be facilitated by transporters responsible for Zn/Cd, affected by AM fungi. The Scopus database was used to collect studies between 2000 and 2022 with a focus on the ecological role of AM fungi in environments contaminated with Zn and Cd. Particular emphasis was laid on the molecular mechanisms involved in metal uptake and partitioning. The study revealed that AM fungi indeed regulated Zn and/or Cd transporters, influencing Zn and/or Cd uptake in plants. However, these effects vary significantly based on environmental factors, such as plant and AM fungi species and soil conditions (e.g., pH, phosphorus levels). Given the limited understanding of Hg remediation, insights gained from Zn and Cd transporter systems can guide future Hg research. In conclusion, this study underscores the importance of considering environmental factors and provides fundamental insights into the potential of Hg phytoremediation with the assistance of AM fungi.Publication Further limitations of synthetic fungicide use and expansion of organic agriculture in Europe will increase the environmental and health risks of chemical crop protection caused by copper‐containing fungicides(2023) Burandt, Quentin C.; Deising, Holger B.; Tiedemann, Andreas vonCopper-containing fungicides have been used in agriculture since 1885. The divalent copper ion is a nonbiodegradable multisite inhibitor that has a strictly protective, nonsystemic effect on plants. Copper-containing plant protection products currently approved in Germany contain copper oxychloride, copper hydroxide, and tribasic copper sulfate. Copper is primarily used to control oomycete pathogens in grapevine, hop, potato, and fungal diseases in fruit production. In the environment, copper is highly persistent and toxic to nontarget organisms. The latter applies for terrestric and aquatic organisms such as earthworms, insects, birds, fish, Daphnia, and algae. Hence, copper fungicides are currently classified in the European Union as candidates for substitution. Pertinently, copper also exhibits significant mammalian toxicity (median lethal dose oral = 300–2500 mg/kg body wt in rats). To date, organic production still profoundly relies on the use of copper fungicides. Attempts to reduce doses of copper applications and the search for copper substitutes have not been successful. Copper compounds compared with modern synthetic fungicides with similar areas of use display significantly higher risks for honey bees (3- to 20-fold), beneficial insects (6- to 2000-fold), birds (2- to 13-fold), and mammals (up to 17-fold). These data contradict current views that crop protection in organic farming is associated with lower environmental or health risks. Further limitations in the range and use of modern single-site fungicides may force conventional production to fill the gaps with copper fungicides to counteract fungicide resistance. In contrast to the European Union Green Deal goals, the intended expansion of organic farming in Europe would further enhance the use of copper fungicides and hence increase the overall risks of chemical crop protection in Europe. Environ Toxicol Chem 2024;43:19–30. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.