Browsing by Subject "Soil-vegetation-atmosphere feedback processes"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Studies of soil-vegetation-atmosphere feedback processes with WRF on the convection permitting scale(2017) Milovac, Josipa; Wulfmeyer, VolkerLand system models which can incorporate land-atmosphere and human-environment interactions are vital for reliable climate projections in heterogeneous agricultural landscapes. At resolutions fine enough to resolve detailed land use, models need a sophisticated representation of planetary boundary layer (PBL) and land surface processes in order to predict changes in key quantities like precipitation or temperatures. Assessment of turbulence schemes and land surface models (LSM) is fundamental therefore not only to advance model development, but also to understand important phenomena like feedbacks within the soil-vegetation-atmosphere (SVA) continuum. Up until now however, a lack of appropriate observations has impeded any comprehensive assessments. Here, through comparisons with so far unique profile measurements, the study investigates the impact of using different PBL schemes and LSMs, and explores how SVA feedbacks are simulated by the model. Using the Weather Research and Forecasting (WRF) model, a six member ensemble was run, at a convection permitting resolution, with varying combinations of LSMs (NOAH and NOAH-MP) and PBL schemes (two local and two non-local approaches). The analysis was performed for two case studies – a dry and a convective weather situation – in three different locations in Germany. During the dry case, key convective PBL (CBL) features were analysed, and the simulations were compared with high resolution water vapour differential absorption lidar measurements. For the convective case, the focus was on exploring the model representation of the pre-convective environment and the ensuing convection and precipitation. In both cases, the nature of the simulated SVA feedback processes was assessed through an innovative “mixing diagram” approach. Results show that the nonlocal PBL schemes produce a drier and higher CBL than the local schemes. These results are sensitive to parameters calculated in the surface layer schemes, which are themselves often paired with PBL schemes. Furthermore, the NOAH‑MP LSM produces drier atmospheric conditions than NOAH, with a difference in mixing ratio profiles ranging up to 1.4 gkg-1. These variations are more pronounced in the upper CBL than close to the ground. The mixing diagrams indicate that these deviations are mainly related to entrainment fluxes. In the dry case, NOAH-MP’s dry air entrainment is up to 6 times higher than with NOAH, while in the convective case the difference is not as pronounced (up to 1.5 higher with NOAH-MP). This suggests that the difference in the simulation of the CBL between the two LSMs is strongly linked to the surface energy partitioning – the higher the Bowen ratio, the greater the difference between the LSMs. Thus, WRF appears to be more sensitive to the choice of LSM at higher Bowen ratios. NOAH and NOAH-MP exhibit marked differences in representing atmospheric variables such as moisture. Those differences are not constrained to the lower atmosphere close to the land surface, but extended to the lower troposphere. The variations in free tropospheric moisture between the LSMs strongly affects the nature of the simulated convection, and associated precipitation. The degree of sensitivity of the spatial variability and amount of the precipitation with respect to the selection of LSM and PBL scheme shows a strong dependence on the analysed region. A distinct finding of this thesis is the greater sensitivity of WRF with respect to the PBL development to the selection of the LSM, than to the PBL scheme. Furthermore, the impact of this sensitivity is not constrained to the lower CBL, but extends up to the interfacial layer and the lower troposphere - for both dry and convective weather conditions. On the other hand, it is clear that the simulated coupling strength between the land surface and atmosphere is very sensitive to the surface Bowen ratio. The synergies between high resolution measurements and model simulations, with an advanced representation of the land surface processes, will facilitate not only further development of parameterization schemes, but also an improvement in our understanding of land-atmosphere interactions.