Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Species richness"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Bird species richness and diversity responses to land use change in the Lake Victoria Basin, Kenya
    (2024) Mugatha, Simon M.; Ogutu, Joseph O.; Piepho, Hans-Peter; Maitima, Joseph M.
    The increasing demand for cultivated lands driven by human population growth, escalating consumption and activities, combined with the vast area of uncultivated land, highlight the pressing need to better understand the biodiversity conservation implications of land use change in Sub-Saharan Africa. Land use change alters natural wildlife habitats with fundamental consequences for biodiversity. Consequently, species richness and diversity typically decline as land use changes from natural to disturbed. We assess how richness and diversity of avian species, grouped into feeding guilds, responded to land use changes, primarily expansion of settlements and cultivation at three sites in the Lake Victoria Basin in western Kenya, following tsetse control interventions. Each site consisted of a matched pair of spatially adjacent natural/semi-natural and settled/cultivated landscapes. Significant changes occurred in bird species richness and diversity in the disturbed relative to the natural landscape. Disturbed areas had fewer guilds and all guilds in disturbed areas also occurred in natural areas. Guilds had significantly more species in natural than in disturbed areas. The insectivore/granivore and insectivore/wax feeder guilds occurred only in natural areas. Whilst species diversity was far lower, a few species of estrildid finches were more common in the disturbed landscapes and were often observed on the scrubby edges of modified habitats. In contrast, the natural and less disturbed wooded areas had relatively fewer estrildid species and were completely devoid of several other species. In aggregate, land use changes significantly reduced bird species richness and diversity on the disturbed landscapes regardless of their breeding range size or foraging style (migratory or non-migratory) and posed greater risks to non-migratory species. Accordingly, land use planning should integrate conservation principles that preserve salient habitat qualities required by different bird species, such as adequate patch size and habitat connectivity, conserve viable bird populations and restore degraded habitats to alleviate adverse impacts of land use change on avian species richness and diversity.
  • Loading...
    Thumbnail Image
    Publication
    The road to integrate climate change projections with regional land‐use–biodiversity models
    (2024) Cabral, Juliano Sarmento; Mendoza‐Ponce, Alma; da Silva, André Pinto; Oberpriller, Johannes; Mimet, Anne; Kieslinger, Julia; Berger, Thomas; Blechschmidt, Jana; Brönner, Maximilian; Classen, Alice; Fallert, Stefan; Hartig, Florian; Hof, Christian; Hoffmann, Markus; Knoke, Thomas; Krause, Andreas; Lewerentz, Anne; Pohle, Perdita; Raeder, Uta; Rammig, Anja; Redlich, Sarah; Rubanschi, Sven; Stetter, Christian; Weisser, Wolfgang; Vedder, Daniel; Verburg, Peter H.; Zurell, Damaris
    Current approaches to project spatial biodiversity responses to climate change mainly focus on the direct effects of climate on species while regarding land use and land cover as constant or prescribed by global land‐use scenarios. However, local land‐use decisions are often affected by climate change and biodiversity on top of socioeconomic and policy drivers. To realistically understand and predict climate impacts on biodiversity, it is, therefore, necessary to integrate both direct and indirect effects (via climate‐driven land‐use change) of climate change on biodiversity. In this perspective paper, we outline how biodiversity models could be better integrated with regional, climate‐driven land‐use models. We initially provide a short, non‐exhaustive review of empirical and modelling approaches to land‐use and land‐cover change (LU) and biodiversity (BD) change at regional scales, which forms the base for our perspective about improved integration of LU and BD models. We consider a diversity of approaches, with a special emphasis on mechanistic models. We also look at current levels of integration and at model properties, such as scales, inputs and outputs, to further identify integration challenges and opportunities. We find that LU integration in BD models is more frequent than the other way around and has been achieved at different levels: from overlapping predictions to simultaneously coupled simulations (i.e. bidirectional effects). Of the integrated LU‐BD socio‐ecological models, some studies included climate change effects on LU, but the relative contribution of direct vs. indirect effects of climate change on BD remains a key research challenge. Important research avenues include concerted efforts in harmonizing spatial and temporal resolution, disentangling direct and indirect effects of climate change on biodiversity, explicitly accounting for bidirectional feedbacks, and ultimately feeding socio‐ecological systems back into climate predictions. These avenues can be navigated by matching models, plugins for format and resolution conversion, and increasing the land‐use forecast horizon with adequate uncertainty. Recent developments of coupled models show that such integration is achievable and can lead to novel insights into climate–land use–biodiversity relations.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy