Browsing by Subject "Stickstoffdünger"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Abundance and diversity of total and nitrifying prokaryotes as influenced by biochemical quality of organic inputs, mineral nitrogen fertilizer and soil texture in tropical agro-ecosystems(2016) Muema, Esther Kathini; Cadisch, GeorgTropical agro-ecosystems are limited in nutrient resources as a consequence of i) being composed of highly weathered soils, ii) low native soil organic matter (SOM) content due to conversion of natural forests to arable lands and iii) continuous cropping without replenishing soil nutrients. Recovery of SOM by use of organic residues is faced with other competing uses like animal fodder. Moreover, existing SOM is further reduced by increased turnover rates due to favorable climatic conditions in the tropics. Incorporation of residues is therefore a justified means to restore SOM and to provide crop nutrients through microbial mediated activities like nitrification. Nitrification is a central step of the nitrogen (N) cycle, whereby ammonia is converted into nitrite and then to nitrate by bacteria and archaea through production of the amoA gene encoding the alpha-subunit of the enzyme ammonia monooxygenase. In order to better understand the impact of organic residues of contrasting biochemical quality (i.e., high quality Tithonia diversifolia (TD; C/N ratio: 13, lignin: 8.9 %, polyphenols: 1.7 %), intermediate quality Calliandra calothyrsus (CC; 13, 13, 9.4) and low quality Zea mays (ZM; 59, 5.4, 1.2)) on nutrient provision, effects of residue quality on dynamics of relevant decomposer microbial communities were studied. In addition, mineral N fertilizer was used to compensate for mineral N limitations especially in case of low and intermediate quality residues. Since N is one of the most limiting crop nutrients in the tropics, this study therefore focused on ammonia-oxidizing prokaryotes, using DNA-based quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (TRFLP) techniques. In addition, soil physicochemical properties were measured and linked to the dynamics of microbial communities. The study hypothesized that soil type due to differences in structure and nutrient background, as well as seasonality, which influences soil moisture, would shape the response of the studied communities to biochemical quality of residues. Overall, the results of this PhD research revealed specific responses of dynamics of AOB and AOA to quality of organic residues and their combinations with mineral N fertilizer. They also revealed effects of interrelations between quality of residues and soil texture as well as seasonality particularly precipitation on dynamics of microbial communities. Future investigation of active microbial communities with the use of RNA-based approaches need to be considered to further improve our understanding of quality of SOM on soil nutrient dynamics.Publication Crop yield and fate of nitrogen fertilizer in maize-based soil conservation systems in Western Thailand(2021) Wongleecharoen, Chalermchart; Cadisch, GeorgThe increase in food demand and land scarcity in high-potential lowland areas have forced cropping intensification with a transformation of land use from subsistence to permanent agriculture in remote hillside in Southeast Asia. This change and inappropriate land use are the prime cause of soil degradation by erosion, which have negatively affected the agricultural systems productivity and sustainability in Thailand. Therefore, vulnerable land in sloping terrain is classified as unsuitable for continuous production of arable crops unless conservation measures are introduced to stabilize the landscape. Even though conservation practices can stabilize sloping land, farmers have not been widely adopted the measures due to various constraints, such as crop area loss and crop-tree competition. To improve land use management, a two-year study (2010-2011) was conducted at the Queen Sirikit research station (13°28’N, 99°16’E), Ratchaburi Province, Thailand, on a hillside with a slope of around 20%. The treatments consisted of (T1) maize (Zea mays L.) mono-crop under tillage and fertilization, (T2) maize intercropped with chili (Capsicum annuum L.) under tillage and fertilization, (T3) maize intercropped with chili, application of minimum tillage plus Jack bean (Canavalia ensiformis (L.) DC) relay cropping and fertilizer application, (T4) maize intercropped with chili, application of minimum tillage with Jack bean relay cropping and fertilizer application plus perennial hedges of Leucaena leucocephala (Lam.) de Wit, (T5) as T3 but without fertilization, and (T6) as T4 but without fertilization. There was an additional plot of chili sole cropping to calculate the land equivalent ratio (LER). The first part of the study evaluated yield performance and nitrogen use efficiency (NUE) of crops using the 15N isotope technique under diverse fertilized cropping systems during the first year. Maize grain yields were lower in T2 (3.1 Mg ha-1), T3 (2.6 Mg ha-1) and T4 (3.3 Mg ha-1) than in the control (T1) (6.7 Mg ha-1). The total returns from maize and chili yields were 1,914, 5,129, 3,829, 3,900, 3,494, and 2,976 USD ha-1, for T1, T2, T3, T4, T5 and T6, respectively. Higher economic returns in mixed crop systems, by selling both maize and chilies, compensated for the maize area loss by intercropping. Maize 15NUE was highest in T2 (53.5%), being significantly higher than in T1 (47.0%), T3 (45.5%), and T4 (45.7%). Overall system’s NUE in T2 (56.8%) was comparable to T1 (53.8%) and T4 (54.5%) but significantly lower in T3 (48.6%). Minimum tillage and hedgerows (despite their positive filter effect) did not increase NUE but adversely affected maize growth during the establishment phase. The second part of the study examined nitrogen fertilizers fate and quantified partial nitrogen budgets at plot level over two cropping seasons for various maize-based cropping systems with or without fertilizer application. Overall plant uptake of fertilizer 15N applied to maize was 48.6-56.8% over the first season, while residual fertilizer 15N recovery of plants was only 2.3-4.9% over the subsequent season. The quantity of applied labelled N remaining in the soil at the end of season 1 and season 2 was 6.2-28.1% and 7.7-28.6%, respectively. Thus, 60.0-76.0% in season 1 and 12.7-31.3% in season 2 of the applied fertilizer 15N were accounted for within the plant-soil system. Consequently, 24.0-40.0% and 12.9-16.1% of labelled fertilizer N were not accounted for at the end of season 1 and season 2, respectively. The derived N balance over two years revealed severe soil N depletion under T1 (-202 kg N ha-1), T5 (-86 kg N ha-1) and T6 (-48 kg N ha-1), and a slightly negative N budget under T2 (-5 kg N ha-1). In contrast, T3 (87 kg N ha-1) and T4 (62 kg N ha-1) had positive N balances. The increase of N input via additional N fertilizer applied to chili and symbiotic N2 fixation of legumes, and the reduction of N losses by soil erosion and unaccounted fertilizer N (probably lost via leaching, volatilization and denitrification) were the main factors of the positive N balances under maize-chili intercropping systems with conservation measures and fertilization (T3 and T4). Maize yield decline under T1, T2, T5 and T6 in season 2 was related to negative N balances, while maize yield increase under T3 and T4 was related to positive N balances. However, maize-chili intercropping with fertilization had some advantage (LER > 1.0) relative to sole species cropping. Moreover, total returns from crop yields in season 2 of all maize-chili intercroppings (1,378-1,818 USD ha-1) were higher than chili sole cropping (1,321 USD ha-1), which pointed to its crucial role in decreasing production risk by reducing yield loss by pests and diseases observed in chili plants. The third part of the study used combined data of stable isotope discrimination and electrical resistivity tomography (ERT) to improve understanding of competition at the crop-soil-hedge interface. Hedges significantly reduced maize grain yield and aboveground biomass in rows close to hedgerows. ERT revealed water depletion was stronger in T1 than in T4 and T6, confirming time domain reflectometry (TDR) and leaf area data. In T4, water depletion was higher in maize rows close to the hedge than rows distant to hedges and maize grain δ13C was significantly less negative in rows close to the hedge ( 10.33‰) compared to distant ones ( 10.64‰). Lack of N increased grain δ13C in T6 ( 9.32‰, p ≤ 0.001). Both methods were negatively correlated with each other (r= 0.66, p ≤ 0.001). Combining ERT with grain δ13C and %N allowed identifying that maize growth close to hedges was limited by N and not by water supply. In conclusion, the results suggested a significant positive interaction between mineral N fertilizer, intercropping systems and soil conservation measures in maintaining or improving crop yields and N balances in Thailand’s hillside agriculture. Simultaneously, combining ERT imaging and 13C isotopic discrimination approaches improved the understanding of spatial-temporal competition patterns at the hedge-soil-crop interface and pointed out that competition in maize-based hedgerow systems was driven by nitrogen rather than water limitation. Therefore, sustainable agriculture might be achieved if farmers in Thailand combine soil conservation measures with appropriate and targeted N fertilizer use.Publication Effect of mulch application in combination with NPK fertilizer in cowpea (Vigna unguiculata (L.) Walp.; Leg.) on two key pests, M. vitrata F. (Lepidoptera: Pyralidae) and M. sjostedti Trybom (Thysanoptera: Thripidae), and their respective parasitoids(1999) Zenz, Nikolaus; Zebitz, Claus P. W.African farmers use mulch to preserve soils from physical and nutritional degradation. No clear evidence exists whether mulch may also be used successfully to control pests. This study aimed to assess the effect of mulch in combination with NPK fertilizer on two key pests of cowpea (Vigna unguiculata (L.) Walp.; Leguminosae), the legume pod borer Maruca vitrata F. (Lepidoptera: Pyralidae) and the flower thrips Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae), inclusive of their parasitoids. Trials were carried out in three regions of Benin, West Africa, from 1995 to 1997. This study focused on plant physiology, soil properties, climate as well as habitat structure, all of which were assumed to have a strong influence on pest abundance. Data on plant development represented by number of nodes, flowers, and pods were collected periodically. Flowers were sampled in parallel to monitor the abundance of both pests. Eggs and living larvae of M. vitrata and larvae of M. sjostedti were collected periodically and reared for studies on parasitism. Mortalities due to three braconid parasitoids were assessed belonging to the order of hymenoptera, Dolichogenidea sp., Phanerotoma leucobasis Kriechbaumer, and Braunsia kriegeri Enderlein, which represented the dominant species on larvae of M. vitrata. Ceranisus menes Walker (Hymenoptera: Eulophidae) was the only parasitoid found on M. sjostedti. Pods were harvested and assessed for damage of M. vitrata. Pod number, weight per pod, relative pod and grain damage were investigated and estimates were made of the yield losses. Yield of cowpea was measured and related to preceding pest abundance. Pods were counted, weighed, and husked, and grains were weighed. Flowers were collected from potential wild host species of both pests in the vicinity of cowpea fields. Insect counts from flowers in the adjacent cowpea fields served as comparison.