Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Stress response"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Broad time‐dependent transcriptional activity of metabolic genes of E. coli O104:H4 strain C227/11Φcu in a soil microenvironment at low temperature
    (2023) Detert, Katharina; Währer, Jonathan; Nieselt, Kay; Schmidt, Herbert
    In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.
  • Loading...
    Thumbnail Image
    Publication
    Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites
    (2022) Lilge, Lars; Ersig, Nadine; Hubel, Philipp; Aschern, Moritz; Pillai, Evelina; Klausmann, Peter; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, Rudolf
    Surfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy