Browsing by Subject "Threonine"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Factors influencing the response of broiler chicken to glycine supplements in low crude protein diets(2016) Siegert, Wolfgang; Rodehutscord, MarkusThe increasing demand for meat and other animal products along with the global limitation of arable land for crop production is expected to result in a shortage of protein-rich feedstuff. Furthermore, the excretion of nitrogenous compounds has negative effects on the environment because of the risk of nitrogen (N) leakage into the groundwater. Ammonia emissions from livestock enterprises have been associated with environmentally damaging effects. The biggest determinant of ammonia emissions associated with livestock farming is excretion of N. Excretion of N in part is inevitable but N excretion can be reduced by avoiding excessive intake of feed protein. At present, there is a substantial lack of knowledge about the requirement of nitrogenous nutrients except for essential amino acids (AA) and the influence of these nutrients on animal physiology. As reported in the literature, this has often led to undesirable effects of low crude protein (CP) diets on growth. This partly is due to a deficient glycine (Gly) and serine (Ser) supply in low CP diets. This thesis focused on factors influencing the response to Gly and Ser in low CP broiler feed because growth response to these AA was inconsistent in the literature. In the first study, a meta-analysis was conducted to investigate the response of broilers to dietary levels of Gly equivalents (Glyequi) of Gly and Ser in existing literature. A curvilinear relationship between Glyequi and daily gain (ADG), daily feed intake (ADFI) and feed efficiency (G:F) was found. The impact of dietary Glyequi on ADFI was low, but G:F and ADG varied markedly at different levels of Glyequi. The effect of dietary Glyequi depended on the supply of both methionine (Met) and cysteine (Cys). The G:F and ADG response to dietary Glyequi was different for different Met:(Met+Cys) ratios and Cys concentrations. This was explained by a decreased necessity of conversion of Met to Cys, for which Ser is needed. Adequate concentrations of both Met and Cys probably reduced the necessity of the conversion of Met to Cys. The second study investigated the effect of threonine (Thr) and choline, which are endogenous precursors of Gly, on the response to dietary Glyequi. An increase in Thr concentration reduced the Glyequi concentration required to achieve certain response levels of G:F and ADG. Choline also exerted a considerable effect, but the Glyequi replacing effect of choline was less pronounced than Thr. The observed replacement values of dietary Thr and choline for dietary Glyequi exceeded the possible replacement values calculated by considering endogenous conversion. This likely originated from an excess supply of other essential AA than Thr. If Thr and, to a lower extent, choline limited growth, then excessive intake of other AA had to be catabolized, resulting in an increased need for Glyequi for uric acid formation. It was concluded that further studies should take Glyequi, choline, and Thr together into consideration when determining the requirements for these nutrients. The third study aimed to investigate whether the growth performance and N utilization of broilers are influenced by different proportions of free and peptide-bound AA in diets, and if his influences Glyequi requirements. The hypothesis was that an increased oxidation of free AA leads to an increased ammonia production, which must be detoxified to uric acid in a Gly-dissipating process. 2×2 factorial arrangements were used where one factor was AA from soy protein isolate or from a free AA mix. The other factor was a low and high level of Glyequi. Replacing AA from the soy protein isolate with free AA reduced ADG and G:F, mainly due to reduced ADFI. Reasons for that cannot be identified clearly. The N efficiency on day 21 was not different between the AA sources, possibly due to the lower AA digestibility of the soy protein isolate and higher urinary excretion of nitrogenous substances in the treatments with the AA mix. Thus, availability of AA for protein synthesis after ingestion probably did not limit broiler growth. The ADG of the treatments with the high Glyequi concentration was higher for both AA sources. This increase was due to higher ADFI by broilers in the treatments with soy protein isolate and due to the increased G:F in the treatments with the AA mix. Contrary to the hypothesis, these responses did not give an indication of different utilization of Glyequi for uric acid synthesis. In conclusion, the response of broiler chicken to dietary Glyequi depends on other dietary characteristics, like the concentrations of Cys, Thr, and choline. The information described in this thesis contribute to enable further optimization of the dietary Glyequi concentration as well as the other dietary characteristics influencing the response to Glyequi. This enables reducing the CP concentration in diets without adverse effects on growth and, therefore, diminishing the negative effects of broiler production on the environment.