Browsing by Subject "Tibia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Evaluation of the availability of different mineral phosphorus sources in broilers(2012) Shastak, Yauheni; Rodehutscord, MarkusInorganic feed phosphates are an indispensable supplement for compounding poultry feed. The requirement of available P in broiler chicks cannot be covered only with plant ingredients as P in plant feedstuff is largely presented in form of phytate which is only partially available in avian species. Due to the increase in prices for feed phosphates and environmental concerns associated with excessive excretion of P by livestock, the knowledge about the availability of P from mineral sources has gained in importance during the last decade. However, there is still no standardized method available for assessing the P availability of inorganic feed phosphates. Without knowledge of the exact quantitative values of the P availability for different P sources, it is not possible to formulate adequate diets without the risk of deficiency or excess supplementation. There are various approaches which are used by different laboratories for the determination of P availability. The main problem is, however, that it is not clear how the differences between approaches affect the results. The development of a standardized method of P evaluation, which allows obtaining quantitative values for P availability, is the basis for optimizing the dietary P concentration in broiler diets. The major objective of this thesis was to compare various methodological approaches that are used internationally to determine P availability in terms of their suitability. Therefore, firstly the P availability of two mineral phosphates was determined in 3- and 5-wk-old broilers based on data for P retention and prececal digestibility. The P availability of both mineral sources was calculated for both ages of birds by regression analyses for comparison of both response criteria. Secondly, the tibia bone ash and other bone criteria were determined. A comparison of these bone response criteria was then carried out by relating these data to measurements made on P retention. Thirdly, the suitability of tibia P retention for the estimation of the whole body P retention was investigated at both ages of birds. Variation in P retention of birds in these studies was additionally caused by the level and the source of P in the diet. In a fourth study, the effect of the basal diet composition on the availability of a feed phosphate was investigated based on quantitative P retention. A phytin-containing corn-SBM-based as well as a purified basal diet was used. Moreover, the impact of the inorganic phosphate level on the IP6 hydrolysis of the corn-SBM-based diet was assessed on the basis of excreta collection. In the first study, a corn-SBM-based basal diet was used (0.35% P on dry matter basis). MSPa or DCPa was supplemented to increment the P concentration by 0.08%, 0.16%, and 0.24%. Two balance trials (n=8 birds per diet) and two digestibility trials (n=8 pens with 10 birds per diet) were conducted (8 treatments per diet). In 3-wk-old broilers, P retention for MSPa was 70% and significantly higher (P < 0.001) than for DCPa (29%), as calculated by linear regression analysis. Values determined for P pc digestibility at the same age were very similar (67% for MSPa and 30% for DCPa; P < 0.001). In 5-wk-old broilers, P retention was 63% (MSPa) and 29% (DCPa) (P < 0.001), and pc digestibility was 54% (MSPa) and 25% (DCPa) (P = 0.002). In conclusion, in 3-wk-old broilers results obtained with both approaches were the same. In 5-wk-old broilers, the ranking of the two P sources was the same for both approaches. Values differed not greatly between the two age periods. The second study was linked to the first one, and the experimental design was the same. The study comprised two periods with birds of different ages, but from the same hatch. The response criteria evaluated were tibia, tarsometatarsus, toe ash, and P, as well as the Quantitative Computed Tomography measurements of tibiae, blood Pi concentration, and body weight gain. Responses were evaluated and compared based on linear regression analysis. In general, MSPa had a greater slope than DCPa for all criteria studied. For the different bones, the ratio of slopes was very similar based on the amount of ash in both periods. Foot ash was proved to be as sensitive as tibia ash in both periods. Blood serum Pi and body weight gain were not sufficiently sensitive criteria for P evaluation. We concluded that the ranking of both mineral P sources based on bone criteria differed from the ranking that was based on P retention or pc digestibility. The third study was also linked to the first one. Thus, the experimental design was the same. On days 21 and 35, two chicks per treatment were randomly chosen. Contents of P and Ca were determined in tibiae-free bodies and tibiae. The whole body P to tibia P ratio was 21.3±1.3 at d 21 and 19.8±1.1 at d 35 of age. The slope of linear regressions between the tibia P and the whole body P for both ages was identical (17.7). Results indicated that changes in tibia P may be suitable to predict changes in whole body P retention. In the last experiment, a phytin-containing as well as a purified basal diet, both containing 1.8 g available P per kg feed dry matter, was supplemented with MSPa to increment the P concentration by 0.05%, 0.1%, and 0.15%. A retention trial with excreta collection from d 20-24 was conducted (n=7 birds per diet). The level of P did not significantly affect the total P retention either of the corn-SBM-based or of the purified basal diet (P > 0.05). However, increasing the P level significantly reduced (P = 0.015) the IP6 hydrolysis for the corn-SBM-based diets. Percentage P retention for MSPa was calculated by linear regression analysis. P retention for MSPa was 50% for the corn-SBM-based diet and 51% for the purified diet. We concluded that there was no difference in P retention from MSPa between corn-SBM-based and purified diets. It can be concluded from the results of the present thesis that both retention and pc digestibility can be used for evaluating mineral P sources in broilers based on a regression approach. The ranking of mineral P sources based on bone criteria differed from the ranking that was based on P retention or pc digestibility. There was no difference in P retention from MSPa between corn-SBM-based and purified based diets, but a significant effect of the P-level on the IP6 hydrolysis in corn-SBM-based basal diets was found.