Browsing by Subject "Toxikologie"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Nutrient flow in improved upland aquaculture systems in Yen Chau, province Son La (Vietnam)(2014) Pucher, Johannes Gregor; Focken, UlfertIn South-East Asia, pond aquaculture plays an important role in the integrated agriculture aquaculture systems of small-scale farmers and contributes to their food security and income. In mountainous regions, aquaculture differs from aquaculture that is practiced in the lowland due to differences in climate and availability of feeds, fertilizers and water. In Northern Vietnam, the traditional aquaculture is a polyculture of 5-7 fish species. The macro-herbivorous grass carp (Ctenopharyngodon idella) is stocked as the main species. Common carp (Cyprinus carpio), silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), mrigal (Cirrhinus mrigala), mud carp (Cirrhinus molitorella) and Nile Tilapia (Oreochromis niloticus) are stocked as secondary species and are often insufficiently nourished by farm by-products. Manure is used by farmers as fertilizer for natural food resources. Ponds are managed as a constant water flow-through system. The inflowing water introduces soil particles eroded from the sloping fields of intensively cultured maize and cassava into the ponds, and cause high turbidity that limits both the primary and secondary production. The fish production of this system is low at about 1.5 ± 0.3 t ha-1 a-1 and is mainly limited by the poor quality of pond inputs, low availability of natural food resources, low oxygen production in the ponds and the occurrence of a species-specific disease that causes high mortality in grass carp. To improve the local fish production of small-scale farmers, changes in the traditional pond management were designed and tested in farmers’ ponds in the uplands of Northern Vietnam. These changes included the reduction of water flow through the ponds to reduce the introduction of eroded particles and reduce the turbidity. Chemical fertilizers were added to increase the productivity of natural food resources and encourage higher primary production. The disease-prone grass carp was replaced as the main species by common carp that command a similarly high price on the local markets. To feed the omnivorous common carp, supplemental pellet feeds based mainly on locally available resources were applied to the ponds. In a pond trial, the traditional and modified pond managements were compared for water quality parameters, availability of natural food resources, fish yields, nutrient utilisation efficiencies and monetary net benefit. In a 15N tracer experiment, the nitrogen dynamics in the natural food web in local ponds were compared under the two types of pond management. Acceptability of the modifications by local farmers was evaluated. In a net cage trial, the suitability of earthworm meal as a replacement for fishmeal in supplemental pellet feeds for common carp was tested. In another net cage trial, the effect of pesticide contaminated grass feeds on the feed intake and health condition of grass carp were tested. When compared with traditional pond management, the modified pond management was found to result in reduced water turbidity, deeper phototrophic zones, higher availability of natural food resources, higher primary production and higher fish yield. In addition, the small plankton benefited from the changes and allowed significantly higher growth rates of filter feeding fish. Common carp and grass carp had higher yields due to the changes. Under both types of pond management, nitrogen compounds were assimilated rapidly into the natural food web and there were high rates of sedimentation and re-mobilization of settled nitrogen from the pond bottom. Generally, the modifications to pond management were associated with increased nutrient utilisation efficiencies and resulted in higher net benefits and more stable pond culture conditions. It was shown that plant material from pesticide-treated fields should only be used cautiously as feeds for grass carp because pesticide residues reduce feed intake and adversely affect fish health. Low cost modifications were well accepted by the farmers. Application of supplemental feeds and chemical fertilisers, which required a continual monetary investment, were less well received. The better-educated farmers are more likely to further invest in aquaculture and might act as local adopters. To reduce the costs of feeds for common carp, earthworm has been shown to be suitable as a replacement for fishmeal in feeds. Vermiculture might therefore be a suitable additional farming activity in combination with the implementation of pond management modifications. Formation of fish farmer cooperatives might further increase the acceptability of innovations. The improvements to pond aquaculture that have been developed here may have a beneficial impact on fish production, food security and income of small-scale farmers in the uplands in South-East Asia if the information is suitably transferred through education programmes that train farmers in technologies that have been specially adapted to conditions in the uplands.Publication Sequestration of plant toxins in milkweed bugs (Heteroptera: Lygaeinae)physiological implications and mechanisms
(2023) Espinosa del Alba, Laura; Petschenka, GeorgInsect herbivores and plants together are a crucial component of terrestrial macro-biodiversity. Within the realm of plant-insect interactions, phytophagy by insects triggered an “arms-race” dynamic resulting in escalatory adaptation and counter-adaptation over time. This coevolution led to complex phenomena such as sequestration of plant toxins by specialized insects, with the main aim to deter predators. Although sequestration is an extensively reported phenomenon, many physiological aspects and underlying mechanisms remain largely unexplored. Milkweed bugs (Heteroptera: Lygaeinae) constitute a versatile model ideally suited for studying both areas due to their particular evolutionary history. They are primarily associated with plant species in the Apocynaceae which commonly produce cardenolides, but remarkably some milkweed bug species secondarily evolved novel associations with phylogenetically disparate plant families supplying new sources of chemically related or unrelated toxins. Using as model milkweed bugs the cardenolide specialist Oncopeltus fasciatus and Spilostethus saxatilis, a species that shifted to sequestration of the chemically unrelated colchicoids, the present thesis first aimed to develop a new artificial diet that allowed the incorporation of the desired types and amounts of toxins without impairing insect performance. Taking a simplified approach, an artificial diet presented in a pill form and made of 100% organic sunflower meal was established. Despite the fact that the new diet has remarkable energy and nutrient differences with sunflower seeds (the laboratory diet), no differences in terms of insect performance were found between the two diets in O. fasciatus and S. saxatilis. Moreover, the new diet presented an acceptable concentration accuracy and shelf-life for short-term toxin feeding assays. Once established, the new diet was used to investigate the effects of cardenolides and colchicoids on several life-history traits of S. saxatilis, and to compare them with the effect of cardenolides in O. fasciatus. Although both classes of toxins have different molecular targets (cardenolides: Na+/K+-ATPase; colchicoids: tubulin), S. saxatilis was able to sequester them at a cost-free level. In fact, an increased performance was observed in O. fasciatus and an according trend was found in S. saxatilis after dietary exposure to cardenolides and colchicoids, respectively. Among cardenolides, labriformin is especially toxic for milkweed-specialist Na+/K+-ATPases in vitro. Nevertheless, it was shown to have no costs in terms of growth and fertility at the whole organism level for O. fasciatus. This finding might be an example of reciprocal evolution between milkweed plants and its herbivores, where highly toxic cardenolides specifically targeted to insect specialists are counteracted by tolerance, detoxification, and sequestration strategies. To assess the role of sequestration beyond normal physiological conditions, O. fasciatus and S. saxatilis were orally infected with the bacterium Pseudomonas entomophila. Neither cardenolides nor colchicoids provided a higher resistance or tolerance. Regarding mechanisms of sequestration, the other overarching research topic of the present thesis, both in vivo (whole animal) and in vitro (isolated digestive tracts) approaches showed no reciprocal competition for the same transport mechanism between chemically related and unrelated toxins. Furthermore, the digestive tract of milkweed bugs did not seem to be a critical mediator as it is for other non-sequestering and sequestering species. The time course of sequestration for the model species was resolved from three days to one hour, and the higher levels of colchicoids detected in S. saxatilis compared to the level of cardenolides in O. fasciatus might indicate an early acquisition of defenses with the shift from cardenolide to colchicoid-containing plants. Finally, a hint to preadaptation mechanisms to resist novel toxins was documented in Spilostethus pandurus, a species that belongs to the same genus as S. saxatilis, thereby providing a basis for future investigations.