Browsing by Subject "Umweltindikator"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Biomonitoring of ammonia deposition by means of higher plants(2013) Ilogu Chibuzo Franklin; Fangmeier, AndreasAtmospheric nitrogen deposition emanating from oxidized or reduced nitrogen sources has been influenced immensely by human activities. This is as a result of the need to improve and meet the ever changing demands of an increasing growth in global population. The benefits accrued from such activities however, have not been without some negative effects on several ecosystems, plants, air quality and human health. This is due to the emission of reactive nitrogen species and its contribution to the level of atmospheric nitrogen pollution in the environment as well as nitrogen deposition afterwards. Atmospheric ammonia (NH3) arguably is an important source of nitrogen deposition. Its major source is from agricultural activities involving various aspects of crop production including, fertilizer and manure applications among others and also importantly from livestock management. It is pertinent therefore, to conduct continuous monitoring studies in order to ascertain the prevailing ambient NH3 concentration in an area, so as to identify periods when threshold values are exceeded and also to determine how certain plants would respond when exposed to NH3 pollution. This necessitated the need to investigate in this thesis, through active biomonitoring, the interaction of NH3 pollution on selected indicator species namely, Italian ryegrass (Lolium multiflorum L.), barnyard grass (Echinochloa crus-galli L.), stinging nettle (Urtica dioica L.) and common lambsquarters (Chenopodium album L.). The influence of nitrogen deposition, arising from NH3 pollution on the selected indicator species were examined by the responses of the free amino acids and above ground biomass accumulation of the various plants studied, as an indicator of nitrogen accumulation. In order to execute plant and atmospheric NH3 interactions, two different experiments were conducted. The first experiment was a field study carried out around a livestock farm as a source of NH3 pollution and nitrogen deposition. Plant materials were exposed alongside passive diffusion tube samplers at three selected distances from the stable along a transect of 804m. The three different sites were selected with increasing distance from the stable, in order to enable a comparison between the plants exposed in close proximity to the source NH3 emission and those further away. The ambient NH3 concentration at each site was measured with the passive diffusion tube samplers exposed at each location. This measurement was conducted with a view to determine the ambient NH3 concentration exposed to the plant materials at each site and also to observe the influence of increasing distance on NH3 pollution and its exposure on the plants, from a point source of NH3 pollution. Furthermore, two fumigation experiments were conducted under controlled greenhouse conditions. In the fumigation study, only Lolium multiflorum and Echinochloa crus-galli, plants were used for this experiment and exposed to three treatment levels of gaseous NH3 fumigations in different growth chambers. The plants were exposed to the following treatments, non-filtered air (NFA), non-filtered air with low NH3 concentration (NFA+) and non-filtered air with high NH3 concentration (NFA++) in both fumigation experiments. In the field experiment, the ambient NH3 concentration measured at each location from the stable, decreased with increasing distance from the point of NH3 emission. This decrease in concentration of NH3 clearly demonstrates the impact of livestock management as a source of NH3 pollution. The free amino acid concentrations and compositions investigated in the various plants studied in the field experiments showed a significant response to NH3 exposure. Several fold increases in the free amino acid concentrations and changes in composition were observed in plant materials exposed to increasing NH3 concentrations at closer proximity to the stable. Observations made from this study showed that an increase in NH3 concentration with closer distance to the source of NH3 pollution influenced remarkably, the percentage increases of low carbon to nitrogen compounds such as Glutamine (Gln) in Lolium multiflorum and Chenopodium album, Asparagine (Asn) in Echinochloa crus-galli and Arginine (Arg) in Urtica dioica. The increases and alterations observed in the free amino acid compositions of the plants studied, demonstrates the uptake and sensitivity of the various plants to NH3 pollution and nitrogen deposition by inducing changes in its free amino acid metabolism. The effects of nitrogen deposition on the above ground biomass of the plants in the field study, indicated a significant effect of the ambient NH3 concentrations on Lolium multiflorum, Echinochloa crus-galli and Urtica dioica. These findings demonstrate a positive influence of NH3 pollution as a nitrogen source on growth and biomass accumulation in the plants. Considering the results obtained in this study based on the responses of the plants to atmospheric NH3 pollution in the field and in the fumigation studies, it is obvious NH3 had an influence over the growth and metabolism of the plants studied. This influence indicates the plants were able to detect changes in the ambient NH3 concentrations in the environment and responded by exhibiting changes in biomass production and alterations in free amino acid compositions, thus indicating they have good potentials as biomonitors of ammonia deposition.Publication Ecosystemic Effect Indicators to assess Effects of agricultural Landuse on Ecosystems(2000) Merkle, Andrea Hildegard; Kaupenjohann, MartinAgricultural production and its material and non-material emissions may cause side-effects in ecosystems. These effects have to be assessed and evaluated. The aim of the present study is to provide a tool that relates emissions of agricultural production and affected ecosystems. This tool represents an indicator approach. The needed indicators are defined as ecosystemic effect indicators (EEI). Within the study a multistage procedure is developed which should be pursued in identifying indicators. To assess which emissions must be regarded in detail an estimation of relevance by means of an emission and input classification preceeds the indicator development. Subsequently, EEI are developed for the relevant emissions and inputs. The derivation of EEI is carried out by the following steps: 1) One starts top-down at the target 'maintaining the ecosystem functioning' in this work depicted by the utility functions. A list with characteristics that are dependent on hierarchical levels is compiled for each relevant function. 2) Starting at one specific input a list of potential receptors is compiled bottom-up. These represent potential effect indicators. 3) By overlapping the lists of the steps 1 and 2 one yields EEI specific for the utility function and the input under consideration. The step 3 is performed by means of expert knowledge. The advantage of the indicator approach is its operativeness which is site-independent. The results of the study show that EEI may be deemed to be promising tools to picture human influences in particular of agricultural production on ecosystems. The results of the case study provide the basis to assess effects on ecosystems for some major stressors. In cases where critical values are available site specific quantitative statements concerning ecological effects within the frame of sustainable agriculture are enabled by the present method for the derivation of indicators. Subsequently, necessary measures can be deduced