Browsing by Subject "Unmanned aerial vehicle (UAV)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Effect of operational parameters of unmanned aerial vehicle (UAV) on droplet deposition in trellised pear orchard(2023) Qi, Peng; Zhang, Lanting; Wang, Zhichong; Han, Hu; Müller, Joachim; Li, Tian; Wang, Changling; Huang, Zhan; He, Miao; Liu, Yajia; He, XiongkuiBackground: Unmanned Aerial Vehicles (UAVs) are increasingly being used commercially for crop protection in East Asia as a new type of equipment for pesticide applications, which is receiving more and more attention worldwide. A new model of pear cultivation called the ‘Double Primary Branches Along the Row Flat Type’ standard trellised pear orchards (FT orchard) is widely used in China, Japan, Korea, and other Asian countries because it saves manpower and is suitable for mechanization compared to traditional spindle and open-center cultivation. The disease and pest efficacy of the flat-type trellised canopy structure of this cultivation is a great challenge. Therefore, a UAV spraying trial was conducted in an FT orchard, and a four-factor (SV: Spray application volume rate, FS: Flight speed, FH: Flight height, FD: Flight direction) and 3-level orthogonal test were designed. Results: These data were used to analyze the effect, including spray coverage, deposit density, coefficient of variation, and penetration coefficient on the canopy, to determine the optimal operating parameters of the UAV for pest efficacy in FT orchards. The analysis of extremes of variance showed that factor FD had a significant effect on both spray coverage and deposition density. Followed by factor FS, which had a greater effect on spray coverage (p < 0.05), and factor SV, FH, which had a greater effect on deposition density (p < 0.05). The effects of different factors on spray coverage and deposit density were FD > FS > FH > SV, FD > FH > SV > FS, in that order. The SV3-FS1-FH1-FD3, which flight along the row with an application rate of 90 L/ha, a flight speed of 1.5 m/s, and a flight height of 4.5 m, was the optimal combination, which produced the highest deposit density and spray coverage. It was determined through univariate analysis of all experimental groups, using droplet density of 25/cm2 and spray coverage of 1%, and uniformity of 40% as the measurement index, that T4 and T8 performed the best and could meet the control requirements in different horizontal and vertical directions of the pear canopy. The parameters were as follows: flight along the tree rows, application rate not less than 75 L/ha, flight speed no more than 2 m/s, and flight height not higher than 5 m. Conclusion: This article provides ample data to promote innovation in the use of UAVs for crop protection programs in pergola/vertical trellis system orchards such as FT orchards. At the same time, this project provided a comprehensive analysis of canopy deposition methods and associated recommendations for UAV development and applications.Publication Remote sensing of maize plant height at different growth stages using UAV-based digital surface models (DSM)(2022) Oehme, Leon Hinrich; Reineke, Alice-Jacqueline; Weiß, Thea Mi; Würschum, Tobias; He, Xiongkui; Müller, JoachimPlant height of maize is related to lodging resistance and yield and is highly heritable but also polygenic, and thus is an important trait in maize breeding. Various manual methods exist to determine the plant height of maize, yet they are labor-intensive and time consuming. Therefore, we established digital surface models (DSM) based on RGB-images captured by an unmanned aerial vehicle (UAV) at five different dates throughout the growth period to rapidly estimate plant height of 400 maize genotypes. The UAV-based estimation of plant height (PHUAV) was compared to the manual measurement from the ground to the highest leaf (PHL), to the tip of the manually straightened highest leaf (PHS) and, on the final date, to the top of the tassel (PHT). The best results were obtained for estimating both PHL (0.44 ≤ R2 ≤ 0.51) and PHS (0.50 ≤ R2 ≤ 0.61) from 39 to 68 days after sowing (DAS). After calibration the mean absolute percentage error (MAPE) between PHUAV and PHS was in a range from 12.07% to 19.62%. It is recommended to apply UAV-based maize height estimation from 0.2 m average plant height to maturity before the plants start to senesce and change the leaf color.