Browsing by Subject "Vitamin A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Combined effects of drought and soil fertility on the synthesis of vitamins in green leafy vegetables(2023) Park, Taewan; Fischer, Sahrah; Lambert, Christine; Hilger, Thomas; Jordan, Irmgard; Cadisch, GeorgGreen leafy vegetables, such as Vigna unguiculata, Brassica oleraceae, and Solanum scabrum, are important sources of vitamins A, B1, and C. Although vitamin deficiencies considerably affect human health, not much is known about the effects of changing soil and climate conditions on vegetable vitamin concentrations. The effects of high or low soil fertility and three drought intensities (75%, 50%, and 25% pot capacity) on three plant species were analysed (n = 48 pots) in a greenhouse trial. The fresh yield was reduced in all the vegetables as a result of lower soil fertility during a severe drought. The vitamin concentrations increased with increasing drought stress in some species. Regardless, the total vitamin yields showed a net decrease due to the significant biomass loss. Changes in vitamin concentrations as a result of a degrading environment and increasing climate change events are an important factor to be considered for food composition calculations and nutrient balances, particularly due to the consequences on human health, and should therefore be considered in agricultural trials.Publication Vitamin A- and D-deficient diets disrupt intestinal antimicrobial peptide defense involving Wnt and STAT5 signaling pathways in mice(2023) Filipe Rosa, Louisa; Petersen, Patricia P.; Görtz, Lisa F.; Stolzer, Iris; Kaden-Volynets, Valentina; Günther, Claudia; Bischoff, Stephan C.Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.