Browsing by Subject "Winter wheat"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Bromus-Arten in Winterweizen: Verbreitung, Bedeutung und Populationsdynamik(2005) Moray, Ralph; Hurle, KarlThe increase of reduced tillage in agriculture and winter cereal dominated crop rotations has lead to a rise of annual and perennial grass weeds in the last decades. One of these are Bromus species that occur worldwide in cereal growing areas. In Germany they also attract more and more interest because of their increasing distribution. Therefore an inves-tigation was conducted to assess the current situation of Bromus species in Germany, competition, population biology and control. Additionally, control strategies were designed on the basis of analyses of population-dynamical parameters. A survey carried out in Germany, showed that Bromus sterilis and B. secalinus were found to be the dominant species. The problems that were predominantly mentioned were yield loss and difficulties at harvest which mostly appear in winter wheat. Their occurrence is closely connected with reduced tillage, early seeding and winter cereal dominated crop rotations whereas Bromus densities can be reduced effectively with a mouldboard plough or the increase of spring crops in crop rotation. In dicot. crops the chemical control was regarded as very good, whereas in cereals between good to sufficient. All of the survey participants expected a further distribution of Bromus species on arable land. Field trials were conducted on three locations over a period of three years to investigate the competition of B. sterilis, B. secalinus, B. tectorum and B. japonicus in winter wheat. Weed density and seeding date of winter wheat were considered for the species competition studies. The trials showed that distinct yield losses could be recorded in winter wheat depending on the different Bromus species. Thresholds where calculated based on the relationship between weed density and yield loss. The thresholds for the Bromus species in winter wheat were below the values given in literature for other grass weeds in winter cereals. This highlights the strong competitiveness of the species. Additionally the results showed that with late seeding the weed density decreases distinctively and thereby the yield loss can be reduced by half. Greenhouse trials on the efficiency of the three in Germany registered herbicides for the control of Bromus species showed, that a sufficient control of B. sterilis and B. secalinus could not always be achieved with the recommended dose. The simulation of the population dynamics showed clearly that with reduced tillage and direct seeding in a winter wheat monoculture without control measures a very fast increase of densities within two growing seasons up to a density-dependent level where high yield losses can be expected. In contrast mouldboard ploughing can control the species to 100 % as a depth of seeds of 10 cm already reduces emergence by half and seeds in the trials showed to have longevity in soil of no longer that 12 months. Moreover, it was demonstrated that the soil cultivation has a higher influence on the development of the weed population than the different seeding dates of winter wheat. The simulation under the influ-ence of herbicide application suggested, that it is possible to practice a winter cereal dominated crop rotation without yield losses. From the results of the investigations it can be concluded that Bromus as a problem in win-ter cereal dominated crop rotation in our latitudes will increase. In fact the control with available herbicides is not always sufficient, but for economical reasons integrated control strategies can not always be considered although quite a good control is given. Therefore one can presume that in future the control of Bromus in winter cereals still will be based on the use of herbicides and that these weed species will be as common in win-ter cereals as it became Alopecurus myosuroides and Apera spica-venti.Publication Decision support systems for weed management in North China plain winter wheat production systems(2012) Menegat, Alexander; Gerhards, RolandThe North China Plain region is on eof the major production regions for wheat and maize in China.Weed control practice in the North China Plain has changed from hand weeding towards chemical methods. This change in weed management practice is caused by a shift of labour towards the fast growing industrial sector and by steadily increasing yields which made herbicides affordable even for small scale farmers. Agriculture in the North China Plain region is characterised by a double cropping system of winter wheat followed by summer maize in one year. Due to the continuous overuse of chemical fertilizers, irrigation water and pesticides severe problems are aligned with this intensive cropping system. Especially the accumulation of pesticide residues in the food chain as well as in environmental resources becomes an increasing problem. Objective of this study is to develop a decision support system for weed management for the North China Plain winter wheat production system. Examples in Europe showed that herbicide input can significantly be reduced by implementing decision support systems. Herbicide selection, dosage and timing of application is calculated on basis of knowledge on weed-crop interaction and dose-response relationships of herbicides and weeds. The decision support systems aims to provide reliable decisions under consideration of economic and ecologic effects of herbicide use.Publication Drought stress during anthesis alters grain protein composition and improves bread quality in field-grown Iranian and German wheat genotypes(2021) Rekowski, Azin; Wimmer, Monika A.; Tahmasebi, Sirous; Dier, Markus; Kalmbach, Sarah; Hitzmann, Bernd; Zörb, ChristianDrought stress is playing an increasingly important role in crop production due to climate change. To investigate the effects of drought stress on protein quantity and quality of wheat, two Iranian (Alvand, Mihan) and four German (Impression, Discus, Rumor, Hybery) winter wheat genotypes, representing different quality classes and grain protein levels, were grown under field conditions in Eqlid (Iran) during the 2018–2019 growing season. Drought stress was initiated by interrupting field irrigation during the anthesis phase at two different stress levels. Drought stress at anthesis did not significantly change total grain protein concentration in any of the wheat genotypes. Similarly, concentrations of grain storage protein sub-fractions of albumin/globulin, gliadin and glutenin were unaltered in five of the six genotypes. However, analysis of protein sub-fractions by SDS polyacrylamide gel electrophoresis revealed a consistent significant increase in ω-gliadins with increasing drought stress. Higher levels of HMW glutenins and a reduction in LMW-C glutenins were observed exclusively under severe drought stress in German genotypes. The drought-induced compositional change correlated positively with the specific bread volume, and was mainly associated with an increase in ω-gliadins and with a slight increase in HMW glutenins. Despite the generally lower HMW glutenin concentrations of the Iranian genotypes and no effect of drought on the concentration of HMW sub-fraction, there was still high specific bread volume under drought. It is suggested that for the development of new wheat cultivars adapted to these challenging climatic conditions, the protein composition should be considered in addition to the yield and grain protein concentration.Publication Management of Fusarium graminearum-inoculated crop residues : effects on head blight, grain yield and grain quality of subsequent winter wheat crops(2001) Yi, Cuilin; Aufhammer, WalterOn the experimental station Ihinger Hof of Hohenheim University field experiments with artificial inoculation were conducted. An isolation-strip experiment included strips of winter rape crops, separating non-inoculated test plots of wheat from inoculated wheat plots. For the main field experiment, maize or spring wheat were planted as pre-crops in rotations with winter wheat and different crop residue treatments were applied. Additional residue management greenhouse tests were conducted and treated equivalent to the field experiment. Results of isolation-strips field experiments with wheat showed that. Isolation strips of 2 m width reduced disease incidence on neighbour plots by more than 50%. A further increase in isolation strip width did improve the isolation effect, but the differences between isolation strip widths were comparatively small. The infection in test plots was not completely eliminated even with 8 m wide strips. Greenhouse tests of residue management showed that deeper residue incorporation effectively reduced the F. g. populations on residues. The application of nitrolime reduced the population level of F. g. On the contrary, fertilization with calcium ammonium nitrate promoted F. g. populations. Soaking the residues in a fungicide preparation eliminated F. g. on the residues completely. Residue management field experiments with artificial inoculation of pre-crops, there were no significant differences in infection level after either maize or wheat, and the infection level of winter wheat was especially high after maize for silage use in one year. The reductions of FHB incidence due to ploughing or nitrolime application were 27-32% or 31-59% compared with residues remaining on the surface or calcium ammonium nitrate fertilization, respectively. But at that moderate FHB infection level, the residue management hardly influenced wheat grain yield and technological grain quality.Publication Rahmenbedingungen für eine vereinfachte „gabenreduzierte“ N-Düngung zu Winterweizen (Triticum aestivum L.)(2018) Makary, Thomas; Müller, TorstenThe split N-fertilization with CAN in three or four doses was considered a measure to improve the nitrogen supply of winter wheat in the past and still is considered a guarantor for good yield and quality. The split N-fertilization with CAN is also recommended to synchronize and harmonize N-demand of the plants as well as soil N-content. The aim of the current study was to analyze simplified (reduced number of N-servings) CAN strategies to winter wheat and the necessity of split nitrogen servings in order to achieve yield and quality aims. This interest was occasioned by impressive results of experiments on farmers’ fields using simplified N- strategies with CAN. Simplified CAN fertilization strategies are able to produce high grain yield and protein contents with winter wheat when the N-supply is ensured. Therefore, the common split N-servings with CAN are not necessary. Simplified strategies with UAN seem to be possible, but this requires further research on application techniques to reduce NH3 losses. Simplified CAN fertilization strategies were tested based on modern wheat varieties and the high plasticity in the development of the yield compounds. Modern wheat varieties show low harvest-indices which is important to reduce the risk of lodging. Furthermore, these varieties are able to overcome omitted N-servings through remobilization of N in the plants. Suboptimal conditions during the development within one important growing stage can be compensated during later growing stages when the growing conditions are better. These properties in combination with a late first application (BBCH 29/31) of N turned out to be the “gold standard” in our experiments. Reduction processes during the tillering (BBCH 25/27) period when N is applied confirm these findings. In addition, the application date for the heading stages (BBCH 49/51) when temperatures are high and conditions very dry have to be considered. Simplified N-fertilization systems can also be applied on Luvisols if the soils are not long-term fertilized by liquid manure. The positive soil characteristics of these soils and the high soil-borne fertility support the approach with simplified CAN strategies. In this situation, N-leaching into deeper soil layers is not likely as high precipitation rates in a short time would be necessary to cause this. In fact, a long term liquid manure application with high rates is not necessary when simplified CAN treatments are applied. Moreover, high N amounts in soils caused by long term liquid manure applications are a risk for N-losses and environmental pollution. Notwithstanding the above, organic fertilizers like liquid manure show positive effects on the soil chemistry and the physical properties of the soil. It is important to apply a system to better include the N fertilization effect of liquid manure during the vegetation period. Additionally, simplified CAN fertilization reduces the work effort on the farms. Currently, especially for livestock farms, which rely on N-fertilization, simplified CAN treatments are a good alternative to the common practice. Whereupon on shallow or sandy soils the approach with simplified CAN treatments should be restricted since these soils mostly show low water holding capacities and high percolate water rates. Under suboptimal growing conditions with high precipitation rates simplified CAN treatments can be a risk for the environment and the groundwater. Apart from that, the volatile weather conditions are the most important factor for yield and quality outcome. Mild conditions during the early winter lead to prolonged growing of the plants. In spring the number of tillers per m-2 is already determinated. Therefore, a combination of N doses at the beginning of the growing season in order to promote the number of tillers doesn´t yield the aimed results. The properties of modern wheat cultivars, tested soils, weather conditions and constraints of simplified CAN treatments show the complexity of N fertilization of winter wheat. Standard measures like the common split CAN fertilization are neither wrong nor ideal to create high yield and protein contents with a minimum of input. The most important items for a successful wheat production are high knowledge and attention levels for the plants and growing conditions. Combining the fertilizer requirement calculation and the knowledge on the field yield potential, the yield and quality of winter wheat can be optimized with a minimum of input.Publication Regionalising a soil-plant model ensemble to simulate future yields under changing climatic conditions(2023) Bendel, Daniela Silke; Streck, ThiloModels are supportive in depicting complex processes and in predicting their effects. Climate models are applied in many areas to assess the possible consequences of climate change. Even though Global Climate Models (GCM) have now been regionalised to the national level, their resolution of down to 5x5 km2 is still rather coarse from the perspective of a plant modeller. Plant models were developed for the field scale and work spatially explicitly. This requires to make adjustments if they are applied at coarser scales. The regionalisation of plant models is reasonable and advantageous against the background of climate change and policy advice, both gaining in importance. The higher the spatial and temporal heterogeneity of a region, the greater the computational need. The (dis)aggregation of data, frequently available in differing resolutions or quality, is often unavoidable and fraught with high uncertainties. In this dissertation, we regionalised a spatially-explicit crop model ensemble to improve yield projections for winter wheat under a changing climate. This involved upscaling a crop model ensemble consisting of three crop models to the Stuttgart region, which has an area of 3,654 km2. After a thorough parameter estimation performed with a varying number of Agricultural Response Units on a high-performance computing cluster, yield projections up to the year 2100 were computed. The representative concentration pathways of the Intergovernmental Panel on Climate Change (IPCC) RCP2.6 (large reduction of CO2 emissions) and RCP8.5 (worst case scenario) served as a framework for this effort. Under both IPCC scenarios, the model ensemble predicts stable winter wheat yields up to 2100, with a moderate decrease of 5 dt/ha for RCP2.6 and a small increase of 1 dt/ha for RCP8.5. The variability within the model ensemble is particularly high for RCP8.5. Results were obtained without accounting for a potential progress in wheat breeding.