Clustering surgical procedures for master surgical scheduling

dc.contributor.authorKressner, Alexanderde
dc.contributor.authorSchimmelpfeng, Katjade
dc.date.accessioned2024-04-08T08:54:55Z
dc.date.available2024-04-08T08:54:55Z
dc.date.created2017-09-28
dc.date.issued2017
dc.description.abstractThe sound management of operating rooms is a very important task in each hospital. To use this crucial resource efficiently, cyclic master surgery schedules are often developed. To derive sensible schedules, high-quality input data are necessary. In this paper, we focus on the (elective) surgical procedures’ stochastic durations to determine reasonable, cyclically scheduled surgical clusters. Therefore, we adapt the approach of van Oostrum et al (2008), which was specifically designed for clustering surgical procedures for master surgical scheduling, and present a two-stage solution approach that consists of a new construction heuristic and an improvement heuristic. We conducted a numerical study based on real-world data from a German hospital. The results reveal clusters with considerably reduced variability compared to those of van Oostrum et al(2008).en
dc.identifier.swb493887539
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6197
dc.identifier.urnurn:nbn:de:bsz:100-opus-14123
dc.language.isoeng
dc.relation.ispartofseriesHohenheim discussion papers in business, economics and social sciences; 2017,28
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectMaster surgery scheduling (MSS)en
dc.subjectStochastic surgery durationen
dc.subjectSurgery typesen
dc.subjectClusteringen
dc.subject.ddc300
dc.subject.gndKrankenhausde
dc.subject.gndOperationde
dc.subject.gndAblaufplanungde
dc.titleClustering surgical procedures for master surgical schedulingde
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Kressner2017, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6197}, author = {Kressner, Alexander and Schimmelpfeng, Katja}, title = {Clustering surgical procedures for master surgical scheduling}, year = {2017}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, }
local.export.bibtexAuthorKressner, Alexander and Schimmelpfeng, Katja
local.export.bibtexKeyKressner2017
local.export.bibtexType@techreport
local.faculty.number3de
local.institute.number580de
local.opus.number1412
local.series.issueNumber2017,28
local.series.titleHohenheim discussion papers in business, economics and social sciences
local.universityUniversität Hohenheimde
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitut für Interorganisational Management & Performancede

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dp_28_2017_online.pdf
Size:
580.67 KB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext