A new version of this entry is available:
Loading...
Article
2024
Determining the footprint of breeding in the seed microbiome of a perennial cereal
Determining the footprint of breeding in the seed microbiome of a perennial cereal
Abstract (English)
Background: Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays. Results: Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria , Alphaproteobacteria , and Bacilli , which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia , and Pseudomonas , was transmitted to the next plant generation or shared with offspring seeds. Conclusion: Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Other version
Notes
Publication license
Publication series
Published in
Environmental microbiome, 19 (2024), 40.
https://doi.org/10.1186/s40793-024-00584-3.
ISSN: 2524-6372
London : BioMed Central
Other version
Faculty
Institute
Examination date
Supervisor
Cite this publication
Michl, K., David, C., Dumont, B., Mårtensson, L.-M. D., Rasche, F., Berg, G., & Cernava, T. (2024). Determining the footprint of breeding in the seed microbiome of a perennial cereal. Environmental microbiome, 19. https://doi.org/10.1186/s40793-024-00584-3
Edition / version
Citation
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
630 Agriculture
Original object
University bibliography
Standardized keywords (GND)
BibTeX
@article{Michl2024,
doi = {10.1186/s40793-024-00584-3},
author = {Michl, Kristina and David, Christophe and Dumont, Benjamin et al.},
title = {Determining the footprint of breeding in the seed microbiome of a perennial cereal},
journal = {Environmental Microbiome},
year = {2024},
volume = {19},
}
