Bitte beachten Sie: Im Zeitraum vom 21.12.2024 bis zum 07.01.2025 werden auf hohPublica keine Anfragen oder Publikationen durch das KIM bearbeitet. Please note: KIM will not process any requests or publications on hohPublica between December 21, 2024 and January 7, 2025.
 

UAV remote sensing for high-throughput phenotyping and for yield prediction of Miscanthus by machine learning techniques

dc.contributor.authorImpollonia, Giorgio
dc.contributor.authorCroci, Michele
dc.contributor.authorFerrarini, Andrea
dc.contributor.authorBrook, Jason
dc.contributor.authorMartani, Enrico
dc.contributor.authorBlandinières, Henri
dc.contributor.authorMarcone, Andrea
dc.contributor.authorAwty-Carroll, Danny
dc.contributor.authorAshman, Chris
dc.contributor.authorKam, Jason
dc.contributor.authorKiesel, Andreas
dc.contributor.authorTrindade, Luisa M.
dc.contributor.authorBoschetti, Mirco
dc.contributor.authorClifton-Brown, John
dc.contributor.authorAmaducci, Stefano
dc.date.accessioned2024-10-23T12:25:39Z
dc.date.available2024-10-23T12:25:39Z
dc.date.issued2022de
dc.description.abstractMiscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using 15 VIs time series, and predicted yield using peak descriptors derived from these VIs time series with root mean square error of 2.3 Mg DM ha−1. The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production.en
dc.identifier.swb1824540124
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16755
dc.identifier.urihttps://doi.org/10.3390/rs14122927
dc.language.isoengde
dc.rights.licensecc_byde
dc.source2072-4292de
dc.sourceRemote sensing; Vol. 14, No. 12 (2022) 2927de
dc.subjectMiscanthus
dc.subjectRemote sensing
dc.subjectUAV
dc.subjectMultispectral images
dc.subjectHigh-throughput phenotyping
dc.subjectMachine learning
dc.subjectYield prediction
dc.subjectTrait estimation
dc.subjectPROSAIL
dc.subjectMulti-sensor interoperability
dc.subject.ddc630
dc.titleUAV remote sensing for high-throughput phenotyping and for yield prediction of Miscanthus by machine learning techniquesen
dc.type.diniArticle
dcterms.bibliographicCitationRemote sensing, 14 (2022), 12, 2927. https://doi.org/10.3390/rs14122927. ISSN: 2072-4292
dcterms.bibliographicCitation.issn2072-4292
dcterms.bibliographicCitation.issue12
dcterms.bibliographicCitation.journaltitleRemote sensing
dcterms.bibliographicCitation.volume14
local.export.bibtex@article{Impollonia2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16755}, doi = {10.3390/rs14122927}, author = {Impollonia, Giorgio and Croci, Michele and Ferrarini, Andrea et al.}, title = {UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques}, journal = {Remote sensing}, year = {2022}, volume = {14}, number = {12}, }
local.export.bibtexAuthorImpollonia, Giorgio and Croci, Michele and Ferrarini, Andrea et al.
local.export.bibtexKeyImpollonia2022
local.export.bibtexType@article

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
remotesensing-14-02927-v3.pdf
Size:
4.58 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
remotesensing-14-02927-s001.zip
Size:
56.89 KB
Format:
Unknown data format