A new version of this entry is available:
Loading...
Doctoral Thesis
2019
Spatial combination of sensor data deriving from mobile platforms for precision farming applications
Spatial combination of sensor data deriving from mobile platforms for precision farming applications
Abstract (English)
This thesis combines optical sensors on a ground and on an aerial platform for field measurements in wheat, to identify nitrogen (N) levels, estimating biomass (BM) and predicting yield. The Multiplex Research (MP) fluorescence sensor was used for the first time in wheat. The individual objectives were: (i) Evaluation of different available sensors and sensor platforms used in Precision Farming (PF) to quantify the crop nutrition status, (ii) Acquisition of ground and aerial sensor data with two ground spectrometers, an aerial spectrometer and a ground fluorescence sensor, (iii) Development of effective post-processing methods for correction of the sensor data, (iv) Analysis and evaluation of the sensors with regard to the mapping of biomass, yield and nitrogen content in the plant, and (v) Yield simulation as a function of different sensor signals.
This thesis contains three papers, published in international peer-reviewed journals. The first publication is a literature review on sensor platforms used in agricultural research. A subdivision of sensors and their applications was done, based on a detailed categorization model. It evaluates strengths and weaknesses, and discusses research results gathered with aerial and ground platforms with different sensors. Also, autonomous robots and swarm technologies suitable for PF tasks were reviewed.
The second publication focuses on spectral and fluorescence sensors for BM, yield and N detection. The ground sensors were mounted on the Hohenheim research sensor platform “Sensicle”. A further spectrometer was installed in a fixed-wing Unmanned Aerial Vehicle (UAV). In this study, the sensors of the Sensicle and the UAV were used to determine plant characteristics and yield of three-year field trials at the research station Ihinger Hof, Renningen (Germany), an institution of the University of Hohenheim, Stuttgart (Germany). Winter wheat (Triticum aestivum L.) was sown on three research fields, with different N levels applied to each field. The measurements in the field were geo-referenced and logged with an absolute GPS accuracy of ±2.5 cm. The GPS data of the UAV was corrected based on the pitch and roll position of the UAV at each measurement. In the first step of the data analysis, raw data obtained from the sensors was post-processed and was converted into indices and ratios relating to plant characteristics. The converted ground sensor data were analysed, and the results of the correlations were interpreted related to the dependent variables (DV) BM weight, wheat yield and available N. The results showed significant positive correlations between the DV’s and the Sensicle sensor data.
For the third paper, the UAV sensor data was included into the evaluations. The UAV data analysis revealed low significant results for only one field in the year 2011. A multirotor UAV was considered as a more viable aerial platform, that allows for more precision and higher payload. Thereby, the ground sensors showed their strength at a close measuring distance to the plant and a smaller measurement footprint.
The results of the two ground spectrometers showed significant positive correlations between yield and the indices from CropSpec, NDVI (Normalised Difference Vegetation Index) and REIP (Red-Edge Inflection Point). Also, FERARI and SFR (Simple Fluorescence Ratio) of the MP fluorescence sensor were chosen for the yield prediction model analysis. With the available N, CropSpec and REIP correlated significantly. The BM weight correlated with REIP even at a very early growing stage (Z 31), and with SAVI (Soil-Adjusted Vegetation Index) at ripening stage (Z 85). REIP, FERARI and SFR showed high correlations to the available N, especially in June and July. The ratios and signals of the MP sensor were highly significant compared to the BM weight above Z 85. Both ground spectrometers are suitable for data comparison and data combination with the active MP fluorescence sensor. Through a combination of fluorescence ratios and spectrometer indices, linear models for the prediction of wheat yield were generated, correlating significantly over the course of the vegetative period for research field Lammwirt (LW) in 2012. The best model for field LW in 2012 was selected for cross-validation with the measurements of the fields Inneres Täle (IT) and Riech (RI) in 2011 and 2012. However, it was not significant. By exchanging only one spectral index with a fluorescence ratio in a similar linear model, it showed significant correlations.
This work successfully proves the combination of different sensor ratios and indices for the detection of plant characteristics, offering better and more robust predictions and quantifications of field parameters without employing destructive methods. The MP sensor proved to be universally applicable, showing significant correlations to the investigated characteristics such as BM weight, wheat yield and available N.
Abstract (German)
Diese Arbeit kombiniert optische Sensoren auf einer Sensorplattform (SPF) am Boden und in der Luft bei Messungen in Weizen, um die Stickstoff-(N)-Werte zu identifizieren, während gleichzeitig die Biomasse (BM) geschätzt und der Ertrag vorhergesagt wird. Erstmals wurde hierfür der Fluoreszenzsensor Multiplex Research (MP) in Weizen eingesetzt. Die Ziele dieser Dissertation umfassen: (i) Bewertung verfügbarer Sensoren und SPF, die in der Präzisionslandwirtschaft zur Quantifizierung des Ernährungszustandes von Nutzpflanzen verwendet werden, (ii) Erfassung von Daten mit zwei Spektrometern am Boden, einem Spektrometer auf einem Modellflugzeug (UAV) und einem Fluoreszenzsensor am Boden, (iii) Erstellung effektiver Nachbearbeitungsmethoden für die Datenkorrektur, (iv) Analyse und Evaluation der Sensoren für die Abbildung der BM, des Ertrags und des N-Gehaltes in der Pflanze, und (v) Ertragssimulation als Funktion von Merkmalen unterschiedlicher Sensorsignale.
Diese Arbeit enthält drei Artikel, die in international begutachteten Fachzeitschriften publiziert wurden. Die erste Veröffentlichung ist eine Literaturrecherche über SPF in der Agrarforschung. Ein detailliertes Kategorisierungsmodell wird für eine allgemeine Unterteilung der Sensoren und deren Anwendungsgebiete herangenommen, die Stärken und Schwächen bewertet, und die Forschungsergebnisse von Luft- und Bodenplattformen mit unterschiedlicher Sensorik diskutiert. Außerdem werden autonome Roboter und für landwirtschaftliche Aufgaben geeignete Schwarmtechnologien beschrieben.
Die zweite Publikation fokussiert sich auf Spektral- und Fluoreszenzsensoren für die Erfassung von BM, Ertrag und N. In der Arbeit wurden die Bodensensoren auf der Hohenheimer Forschungs-SPF „Sensicle“ und der Sensor auf dem UAV in dreijährigen Feldversuchen auf der Versuchsstation Ihinger Hof der Universität Hohenheim in Renningen für die Bestimmung von Pflanzenmerkmalen und des Ertrags eingesetzt. Auf drei Versuchsfeldern wurde Winterweizen ausgesät, und in einem randomisierten Versuchsdesign unterschiedliche N-Düngestufen angelegt. Die Sensormessungen im Feld wurden mit einer absoluten GPS Genauigkeit von ±2,5 cm verortet. Die GPS Daten des UAV’s wurden mittels der Nick- und Rollposition lagekorrigiert. Im ersten Schritt der Datenanalyse wurden die Sensorrohdaten nachbearbeitet und in Indizes und Ratios umgerechnet. Die Bodensensordaten wurden analysiert, und die Ergebnisse der Korrelationen in Bezug zu den abhängigen Variablen (DV) BM-Gewicht, Weizenertrag, verfügbarer sowie aufgenommener N dargestellt. Die Ergebnisse zeigen signifikant positive Korrelationen zwischen den DV’s und den Sensicle-Sensordaten.
Für die dritte Publikation wurden die Sensordaten des UAV in die Auswertungen miteinbezogen. Die Analyse der UAV Daten zeigte niedrige signifikante Ergebnisse für nur ein Feld im Versuchsjahr 2011. Ein Multikopter wird als zuverlässigere Luftplattform erachtet, der mehr Präzision und eine höhere Nutzlast ermöglicht. Die Sensoren auf dem Sensicle zeigten ihren Vorteil bedingt durch einen kürzeren Messabstand zur Pflanze und eine kleinere Messfläche.
Die Ergebnisse der beiden Sensicle-Spektrometer zeigten signifikant positive Korrelationen zwischen dem Ertrag und den Indizes von CropSpec, NDVI (Normalised Difference Vegetation Index) und REIP (Red-Edge Inflection Point). Auch FERARI und SFR (Simple Fluorescence Ratio) des MP-Sensors wurden für die Analyse des Ertragsvorhersagemodells ausgewählt. Mit dem verfügbaren N korrelierten CropSpec und REIP hochsignifikant. Das BM-Gewicht korrelierte bereits ab einem sehr frühen Wachstumsstadium (Z31) mit REIP und im Reifestadium (Z85) mit SAVI (Soil-Adjusted Vegetation Index). REIP, FERARI und SFR zeigten hohe Korrelationen mit dem verfügbaren N, insbesondere im Juni und Juli. Die Ratios und Signale des MP Sensors sind vor allem ab Z85 gegenüber dem BM-Gewicht hochsignifikant. Durch eine Kombination von Fluoreszenzwerten und Spektrometerindizes wurden lineare Modelle zur Vorhersage des Weizenertrags erstellt, die im Verlauf der Vegetationsperiode für das Versuchsfeld Lammwirt (LW) im Jahr 2012 signifikant korrelierten. Das beste Modell für das Feld LW im Jahr 2012 wurde für die Kreuzvalidierung mit den Messungen der Versuchsfelder Inneres Täle (IT) und Riech (RI) in den Jahren 2011 und 2012 ausgewählt. Sie waren nicht signifikant, jedoch zeigten sich durch den Austausch nur eines Spektralindexes mit einem Fluoreszenzratio in einem ähnlichen linearen Modell signifikante Korrelationen.
Die vorliegende Arbeit zeigt erfolgreich, dass sich die Kombination verschiedener Sensorwerte und Sensorindizes zur Erkennung von Pflanzenmerkmalen gut eignet, und ohne den Einsatz destruktiver Methoden die Möglichkeit für bessere und robustere Vorhersagen bietet. Vor allem der MP-Fluoreszenzsensor erwies sich als universell einsetzbarer Sensor, der signifikante Korrelationen zu den untersuchten Merkmalen BM-Gewicht, Weizenertrag und verfügbarem N aufzeigte.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Notes
Publication license
Publication series
Published in
Faculty
Faculty of Agricultural Sciences
Institute
Institute of Crop Science
Examination date
2019-04-24
Supervisor
Edition / version
Citation
Identification
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
630 Agriculture
Collections
Original object
Standardized keywords (GND)
BibTeX
@phdthesis{Zecha2019,
url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6396},
author = {Zecha, Christoph Walter},
title = {Spatial combination of sensor data deriving from mobile platforms for precision farming applications},
year = {2019},
school = {Universität Hohenheim},
}