Advancing content synthesis in macro-task crowdsourcing facilitation leveraging natural language processing

dc.contributor.authorGimpel, Henner
dc.contributor.authorLaubacher, Robert
dc.contributor.authorMeindl, Oliver
dc.contributor.authorWöhl, Moritz
dc.contributor.authorDombetzki, Luca
dc.contributor.corporateGimpel, Henner; FIM Research Center for Information Management, Augsburg, Germany
dc.contributor.corporateLaubacher, Robert; Center for Collective Intelligence, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
dc.contributor.corporateMeindl, Oliver; FIM Research Center for Information Management, Augsburg, Germany
dc.contributor.corporateWöhl, Moritz; FIM Research Center for Information Management, Augsburg, Germany
dc.contributor.corporateDombetzki, Luca; TUM.ai, Munich, Germany
dc.date.accessioned2025-11-24T13:37:29Z
dc.date.available2025-11-24T13:37:29Z
dc.date.issued2024
dc.date.updated2025-11-04T17:45:58Z
dc.description.abstractMacro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.
dc.description.sponsorshipFraunhofer-Institut für Angewandte Informationstechnik FIT (1050)
dc.identifier.urihttps://doi.org/10.1007/s10726-024-09894-w
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/18368
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectAction design research
dc.subjectFacilitation
dc.subjectLarge language model
dc.subjectMacro-task crowdsourcing
dc.subjectNatural language processing
dc.subjectSynthesis
dc.subject.ddc000
dc.titleAdvancing content synthesis in macro-task crowdsourcing facilitation leveraging natural language processingen
dc.type.diniArticle
dcterms.bibliographicCitationGroup decision and negotiation, 33 (2024), 5, 1301-1322. https://doi.org/10.1007/s10726-024-09894-w. ISSN: 1572-9907 ISSN: 0926-2644 Dordrecht : Springer Netherlands
dcterms.bibliographicCitation.issn0926-2644
dcterms.bibliographicCitation.issn1572-9907
dcterms.bibliographicCitation.issue5
dcterms.bibliographicCitation.journaltitleGroup decision and negotiation
dcterms.bibliographicCitation.originalpublishernameSpringer Netherlands
dcterms.bibliographicCitation.originalpublisherplaceDordrecht
dcterms.bibliographicCitation.pageend1322
dcterms.bibliographicCitation.pagestart1301
dcterms.bibliographicCitation.volume33
local.export.bibtex@article{Gimpel2024, doi = {10.1007/s10726-024-09894-w}, author = {Gimpel, Henner and Laubacher, Robert and Meindl, Oliver et al.}, title = {Advancing content synthesis in macro-task crowdsourcing facilitation leveraging natural language processing}, journal = {Group decision and negotiation}, year = {2024}, volume = {33}, number = {5}, pages = {1301--1322}, }
local.subject.sdg9
local.subject.sdg13
local.subject.sdg17
local.title.fullAdvancing content synthesis in macro-task crowdsourcing facilitation leveraging natural language processing

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10726_2024_Article_9894.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: