Bayesian inference of root architectural model parameters from synthetic field data

dc.contributor.authorMorandage, Shehan
dc.contributor.authorLaloy, Eric
dc.contributor.authorSchnepf, Andrea
dc.contributor.authorVereecken, Harry
dc.contributor.authorVanderborght, Jan
dc.date.accessioned2024-09-03T13:25:23Z
dc.date.available2024-09-03T13:25:23Z
dc.date.issued2021de
dc.description.abstractBackground and aims: Characterizing root system architectures of field-grown crops is challenging as root systems are hidden in the soil. We investigate the possibility of estimating root architecture model parameters from soil core data in a Bayesian framework. Methods: In a synthetic experiment, we simulated wheat root systems in a virtual field plot with the stochastic CRootBox model. We virtually sampled soil cores from this plot to create synthetic measurement data. We used the Markov chain Monte Carlo (MCMC) DREAM(ZS) sampler to estimate the most sensitive root system architecture parameters. To deal with the CRootBox model stochasticity and limited computational resources, we essentially added a stochastic component to the likelihood function, thereby turning the MCMC sampling into a form of approximate Bayesian computation (ABC). Results: A few zero-order root parameters: maximum length, elongation rate, insertion angles, and numbers of zero-order roots, with narrow posterior distributions centered around true parameter values were identifiable from soil core data. Yet other zero-order and higher-order root parameters were not identifiable showing a sizeable posterior uncertainty. Conclusions: Bayesian inference of root architecture parameters from root density profiles is an effective method to extract information about sensitive parameters hidden in these profiles. Equally important, this method also identifies which information about root architecture is lost when root architecture is aggregated in root density profiles.en
dc.identifier.swb1765324505
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16421
dc.identifier.urihttps://doi.org/10.1007/s11104-021-05026-4
dc.language.isoengde
dc.rights.licensecc_byde
dc.subjectBayesian Inference
dc.subjectCRootBox
dc.subjectRoot system architecture
dc.subjectSoil coring
dc.subject.ddc630
dc.titleBayesian inference of root architectural model parameters from synthetic field dataen
dc.type.diniArticle
dcterms.bibliographicCitationPlant and soil, 467 (2021), 67–89. https://doi.org/10.1007/s11104-021-05026-4. ISSN: 1573-5036
dcterms.bibliographicCitation.issn1573-5036
dcterms.bibliographicCitation.journaltitlePlant and soil
dcterms.bibliographicCitation.volume467
local.export.bibtex@article{Morandage2021, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16421}, doi = {10.1007/s11104-021-05026-4}, author = {Morandage, Shehan and Laloy, Eric and Schnepf, Andrea et al.}, title = {Bayesian inference of root architectural model parameters from synthetic field data}, journal = {Plant and soil}, year = {2021}, volume = {467}, }
local.subject.sdg2
local.title.fullBayesian inference of root architectural model parameters from synthetic field data

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
s11104-021-05026-4.pdf
Size:
4.13 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
11104_2021_5026_MOESM1_ESM.xlsx
Size:
25.99 KB
Format:
Microsoft Excel XML