Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Arauzo, Pablo J."

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Evaluation of the char formation during the hydrothermal treatment of wooden balls
    (2023) Pfersich, Jens; Arauzo, Pablo J.; Modugno, Pierpaolo; Titirici, Maria‐Magdalene; Kruse, Andrea
    With wooden balls, a visualization of the hydrothermal carbonization to show the progress of the conversion to char is presented. In the present study, the balls represent the particles of biomass to investigate the differences in conversion outside and inside of biomass particles, during hydrothermal carbonization. A special focus is on hydrochar and pyrochar formation. The wooden balls are treated in subcritical water at 220 °C for holding times between 0 and 960 min. Even after 960 min, hydrolysis of the original biomass is incomplete as cellulose and hemicellulose are linked by lignin, inhibiting the reaction with water. Moreover, two different pathways of char production can be observed. Inside of the wooden ball pyrochar is formed as any water got that deep in, on the surface hydrochar is fixed, originated from the surrounding liquid. On the ground of the HTC reactor, a thin, brittle precipitate of likely hydrochar or humins can be found either from the precipitation of loosely attached compounds on the surface of the biomass or direct precipitation from the liquid.
  • Loading...
    Thumbnail Image
    Publication
    From coffee waste to wastewater treatment: optimization of hydrothermal carbonization and H₃PO₄ activation for Cr(VI) adsorption
    (2026) Piccoli Miranda de Freitas, Caroline; De Freitas Batista, Gabriel; Dalmolin da Silva, Mariele; Checa Gomez, Manuel; Arauzo, Pablo J.; França da Cunha, Fernando; Kruse, Andrea
    Spent coffee grounds (SCG) are an abundant agro-industrial waste, and their valorization as activated carbon (AC) offers a sustainable approach for wastewater treatment and heavy-metal remediation. However, the high energy demand of SCG activation limits large-scale application. Hydrothermal carbonization (HTC) reduces energy consumption and enhances material properties. This study evaluated the performance of activated carbon (AC) derived from SCG via HTC, followed by H₃PO₄ activation for Cr(VI) removal, and compared it with non-activated carbon obtained by HTC and pyrolysis. The results highlight the effect of chemical activation on enhancing surface area, porosity, and adsorption efficiency. The predicted optimal IN was 1624.7 mg·g⁻¹, closely matching the experimental value of 1640.1 ± 15.5 mg·g⁻¹, achieved at 426 °C, 92 min, and a hydrochar-to-H₃PO₄ ratio of 1:1.6. The optimized AC exhibited a maximum adsorption capacity (Qₑ) of 33 ± 1.1 mg·g⁻¹ and 99.4 ± 0.1 % Cr(VI) removal under pH 2, 25 mg·L⁻¹ initial concentration, and 2 g·L⁻¹ adsorbent dose. In contrast, the non-activated carbon presented a lower iodine number (1411 ± 70 mg·g⁻¹) and inferior adsorption performance, confirming the key role of H₃PO₄ activation in improving surface reactivity and adsorption sites. Chemical activation proved essential for improving Cr(VI) adsorption, with the H₃PO₄-AC exhibiting the highest capacity. These results demonstrate the potential of SCG-derived AC as a low-cost adsorbent for heavy-metal-rich industrial effluents, supporting circular economy strategies.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy