Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "13"
Now showing 1 - 20 of 36
- Results Per Page
- Sort Options
Publication Approaches to increase digestibility of Bangladesh ruminant feed resources in order to mitigate enteric methane production(2024) Bashar, Muhammad Khairul; Rodehutscord, MarkusMultiple analyses have shown that the rising human population, urbanization, and consumer preferences affect the demand for livestock products in developing countries. Concurrently, human population and urbanisation growth are reducing the likelihood of newly cultivated land producing feeds or restoring damaged pastures. Using low-quality roughage more efficiently is an option, but such roughages have drawbacks, including high structural carbohydrate and low nitrogen contents, which lead to poor palatability and nutrient utilisation including emission of methane (CH4) that is harmful to the environment and a loss of energy to the animal. Using commonly accessible legumes and tree foliage could be a possibility to address the need for N and CH4 mitigation due to their high crude protein and secondary compound contents. In order to evaluate the potential of specific combinations of roughages, concentrates, and other feeds, it is necessary to determine the feeding values, in vitro ruminal fermentation, and CH4 production of single feeds, as well as the promising interaction (associative) effects between single feeds when combinded in a ration. This may allow for formulating a better balanced total mixed ration (TMR) for ruminants, which was the main goal of the present doctoral study. Eighteen feedstuffs from Bangladesh were chosen, including roughages such as crop residues (rice straw, urea molasses treated straw and maize stover), silages (Napier silage and Maize silage), common grasses (German grass, Para grass and Napier grass) and leguminous fodder (Ipil-ipil, Glicidia, Alfalfa hay and Moringa tops) and concentrates (crushed wheat, crushed maize, Wheat bran, Kashari bran, and Rice bran). In Study 1, the single feeds were characterized by comprehensive chemical analysis and in vitro production of total gas and methane using the Hohenheim gas test. Based on the results of Study 1, rice straw, German grass, Napier silage, and maize silage were used in Study 2 and incubated in vitro alone or after substitution by Ipil-ipil and Gliricidia at levels of 10%, 20%, 30%, and 40%, respectively. In Study 3, mixtures of roughages and leguminous fodder (rice straw + 40% Ipil-ipil, German grass + 10% Ipil-ipil, Napier silage + 30% Ipil ipil, and maize silage + 30% Ipil-ipil) were combined with single concentrates in order to identify the most promising mixtures in regard to digestibility and methane production. Eventually, 24 TMR were formulated using six for each type of roughage in Study 4. These TMR were comprised of 60% of the same combination of roughage as used in Study 3 and 40% of various combinations of concentrates including TMR-1 (60% rice bran + 10% wheat bran + 30% kashari bran), TMR-2 (30% rice bran + 10% wheat bran + 60% kashari bran), TMR-3 (10% rice bran + 60% wheat bran + 30% kashari bran), TMR-4 (10% rice bran + 30% wheat bran + 60% kashari bran), TMR-5 (60% rice bran + 30% wheat bran + 10 kashari bran), and TMR-6 (30% rice bran + 60% wheat bran + 10% kashari bran) in order to identify suitable TMR for maximising ruminal fermentation and reducing the CH4 production in vitro. In all studies, the total gas production (GP), digestibility of organic matter (dOM), metabolisable energy (ME), and net energy for lactation (NEL) were determined after incubating 200 mg of feed with a rumen fluid-buffer solution for 72 hours. In addition, the CH4 concentration in the produced gas was measured after incubating 120 mg of feed for 24 hours. Measured values of the mixed feed were compared to estimated values, where the estimated values were weighted means of the values of the individual feeds, to determine the associative effects between the feed ingredients (Study 2 and Study 4). In Study 1, the concentration of acid detergent fibre (ADF), neutral detergent fibre (NDF), and acid detergent lignin (ADL) was the lowest in leguminous fodder while the crude protein (CP) concentration was the hightest, followed by the common grasses and the silages. The crop residues showed the lowest CP and the highest cell wall fraction concentrations. The dOM, ME, and NEL of crushed wheat and crushed maize were significantly higher (p<0.05) than those of other feedstuffs. The same differences were found (p<0.05) for CH4 concentration (% of GP) and CH4 production (L CH4/kg dOM). The dOM and ME of German grass and Ipil-ipil were higher (p<0.05), whereas the CH4 concentration and CH4 production were lower compared to that of crop residues and other common grasses. The CH4 production of single feeds decreased with increasing concentrations of CP, ADF, and ADL, whereas it increased with NDF concentration. These findings enabled development of more balanced diets for ruminants with the aim of improved digestibility and reduced CH4 emission while making use of widely available feed resources in Bangladesh. Study 2 aimed to evaluate the in vitro ruminal fermentation, CH4 production, and associative effects between low-quality roughages and CP supplements. The gas production after 24 hours (GP24) and rumen fermentation rate increased (p<0.05) with increasing addition of Ipil-ipil to rice straw. It also resulted in a gradual increase of dOM and ME (p<0.05) of the mixture, reaching maximum values (59.1% and 7.60 MJ ME/kg DM) and maximum reductions in CH4 concentration and CH4/dOM (6.9% and 11.7%) compared to the control with Ipil-ipil addition at 40% of DM. When Ipil-ipil was added at 30% to Napier silage, the same trend was observed for dOM and ME (56.5%, and 7.55 MJ ME/kg DM) and CH4 concentration and CH4/dOM (5.3% and 13.3%). Ipil-ipil did not significantly interact with high quality roughages such as German grass and maize silage. Increasing the addition of Gliricidia to the roughages in Study 2 led to a decrease in GP24, dOM, ME, and CH4 production. The highest levels of the associative effects (p<0.05) were seen when 40% Ipil-ipil was added to rice straw and 30% was added to Napier silage. In conclusion, adding Ipil-ipil to low-quality roughages is superior to Gliricidia and showed promising results, with the ranking as follows: rice straw + 40% Ipil-ipil > Napier silage + 30% Ipil-ipil > maize silage + 30% Ipil-ipil > German gras + 10% Ipil-ipil. Study 3 and Study 4 had the overarching purpose to determine which combination of single concentrates and combinations of concentrates with roughage produced the best mixed feed in terms of rumen fermentation, CH4 reduction potential, and associative effect. The CP and non-stach carbohydrate contents of the Ipil-ipil-based mixed feed was enhanced by adding Wheat bran and Kashari bran as single concentrates, which had a favourable effect on rumen fermentation and gas production but had the opposite effect on CH4 production when compared to the addition of Rice bran. In Study 4, TMR were formulated using roughages and Ipil-ipil and addition of Wheat bran, Kashari bran, and Rice bran in various combinations. The TMR based on German grass and maize silage with specific bran combinations showed significant reductions in in vitro CH4 production, CH4 concentration, and CH4/dOM while maximising GP, dOM, ME, and the associative effects. To conclude, the results of chemical analyses and in vitro fermentation studies showed that specific combinations of roughages, protein feeds, and by-products available in Bangladesh have the potential to formulate rations for cattle that help making livestock production more sustainable. The results may be also relevant for other developing nations. It is suggested to verify the results of the present project by animal trials at local conditions.Publication Arbuscular mycorrhizal fungi-based bioremediation of mercury: insights from zinc and cadmium transporter studies(2023) Guo, Yaqin; Martin, Konrad; Hrynkiewicz, Katarzyna; Rasche, FrankPhytoremediation, a sustainable approach for rehabilitating mercury (Hg)-contaminated soils, can be enhanced by arbuscular mycorrhizal (AM) fungi, which promote plant growth and metal uptake, including Hg, in contaminated soils. Hg, despite lacking a biological function in plants, can be absorbed and translocated using Zn and/or Cd transporters, as these elements belong to the same group in the periodic table (12/2B). In fact, the specific transporters of Hg in plant roots remain unknown. This study is therefore to provide fundamental insights into the prospect to remediate Hg-contaminated soils, with a focus on the role of AM fungi. The hypothesis posits that Hg uptake in plants may be facilitated by transporters responsible for Zn/Cd, affected by AM fungi. The Scopus database was used to collect studies between 2000 and 2022 with a focus on the ecological role of AM fungi in environments contaminated with Zn and Cd. Particular emphasis was laid on the molecular mechanisms involved in metal uptake and partitioning. The study revealed that AM fungi indeed regulated Zn and/or Cd transporters, influencing Zn and/or Cd uptake in plants. However, these effects vary significantly based on environmental factors, such as plant and AM fungi species and soil conditions (e.g., pH, phosphorus levels). Given the limited understanding of Hg remediation, insights gained from Zn and Cd transporter systems can guide future Hg research. In conclusion, this study underscores the importance of considering environmental factors and provides fundamental insights into the potential of Hg phytoremediation with the assistance of AM fungi.Publication Automatic classification of submerged macrophytes at Lake Constance using laser bathymetry point clouds(2024) Wagner, Nike; Franke, Gunnar; Schmieder, Klaus; Mandlburger, Gottfried; Stateczny, AndrzejSubmerged aquatic vegetation, also referred to as submerged macrophytes, provides important habitats and serves as a significant ecological indicator for assessing the condition of water bodies and for gaining insights into the impacts of climate change. In this study, we introduce a novel approach for the classification of submerged vegetation captured with bathymetric LiDAR (Light Detection And Ranging) as a basis for monitoring their state and change, and we validated the results against established monitoring techniques. Employing full-waveform airborne laser scanning, which is routinely used for topographic mapping and forestry applications on dry land, we extended its application to the detection of underwater vegetation in Lake Constance. The primary focus of this research lies in the automatic classification of bathymetric 3D LiDAR point clouds using a decision-based approach, distinguishing the three vegetation classes, (i) Low Vegetation, (ii) High Vegetation, and (iii) Vegetation Canopy, based on their height and other properties like local point density. The results reveal detailed 3D representations of submerged vegetation, enabling the identification of vegetation structures and the inference of vegetation types with reference to pre-existing knowledge. While the results within the training areas demonstrate high precision and alignment with the comparison data, the findings in independent test areas exhibit certain deficiencies that are likely addressable through corrective measures in the future.Publication Bayesian‐optimized experimental designs for estimating the economic optimum nitrogen rate: a model‐averaging approach(2025) Matavel, Custódio Efraim; Meyer‐Aurich, Andreas; Piepho, Hans‐PeterField experiments play a crucial role in optimizing nutrient application strategies and determining the economic optimum nitrogen rate (EONR), aiding stakeholders in agricultural decision‐making. These experiments tailor agricultural input management to maximize efficiency and sustainability, ultimately improving farm economics. However, the optimal setup of field experiments remains an ongoing debate, particularly regarding economic considerations such as the selection of treatment levels (design points), their spatial arrangement, and the number of replications required for statistical validity and cost‐effectiveness. This study optimizes field experiments for estimating the EONR using a model‐averaging approach within a Bayesian framework. We employed Bayesian inference and the No‐U‐turn sampler to integrate model averaging across multiple yield response models, improving robustness in EONR estimation. Stochastic optimization, specifically simultaneous perturbation stochastic approximation, was used to optimize experimental designs, and their performance was evaluated through Monte Carlo simulations. Our results show that optimized experimental designs significantly improve the precision of EONR estimates. Designs incorporating higher number of nitrogen levels provided the best trade‐off between accuracy and efficiency, minimizing bias and mean squared error. Even with a fixed total number of plots (120), increasing the number of design points resulted in lower variance, demonstrating the efficiency of well‐structured experimental designs. This research lays the groundwork for future developments in experimental methodologies with wide‐ranging implications for agricultural economics and policymaking, ultimately supporting better‐informed decision‐making. Future work should integrate environmental constraints and account for real‐world variability in treatment replication to further refine experimental optimization strategies.Publication Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra(2022) Carneiro de Melo Moura, Carina; Setyaningsih, Christina A.; Li, Kevin; Merk, Miryam Sarah; Schulze, Sonja; Raffiudin, Rika; Grass, Ingo; Behling, Hermann; Tscharntke, Teja; Westphal, Catrin; Gailing, OliverBackground: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps , via dual-locus DNA metabarcoding (ITS2 and rbcL ) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. Results: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. Conclusions: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.Publication Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials(2021) Laidig, F.; Feike, T.; Hadasch, S.; Rentel, D.; Klocke, B.; Miedaner, T.; Piepho, H. P.Key message: Breeding progress of resistance to fungal wheat diseases and impact of disease severity on yield reduction in long-term variety trials under natural infection were estimated by mixed linear regression models. Abstract: This study aimed at quantifying breeding progress achieved in resistance breeding towards varieties with higher yield and lower susceptibility for 6 major diseases, as well as estimating decreasing yields and increasing disease susceptibility of varieties due to ageing effects during the period 1983–2019. A further aim was the prediction of disease-related yield reductions during 2005–2019 by mixed linear regression models using disease severity scores as covariates. For yield and all diseases, overall progress of the fully treated intensity (I2) was considerably higher than for the intensity without fungicides and growth regulators (I1). The disease severity level was considerably reduced during the study period for mildew (MLD), tan spot (DTR) and Septoria nodorum blotch (ear) (SNB) and to a lesser extent for brown (leaf) rust (BNR) and Septoria tritici blotch (STB), however, not for yellow/stripe rust (YLR). Ageing effects increased susceptibility of varieties strongly for BNR and MLD, but were comparatively weak for SNB and DTR. Considerable yield reductions under high disease severity were predicted for STB (−6.6%), BNR (−6.5%) and yellow rust (YLR, −5.8%), but lower reductions for the other diseases. The reduction for resistant vs. highly susceptible varieties under high severity conditions was about halved for BNR and YLR, providing evidence of resistance breeding progress. The empirical evidence on the functional relations between disease severity, variety susceptibility and yield reductions based on a large-scale multiple-disease field trial data set in German winter wheat is an important contribution to the ongoing discussion on fungicide use and its environmental impact.Publication Challenges of green production of 2,5‐furandicarboxylic acid from bio‐derived 5‐hydroxymethylfurfural: Overcoming deactivation by concomitant amino acids(2022) Neukum, Dominik; Baumgarten, Lorena; Wüst, Dominik; Sarma, Bidyut Bikash; Saraçi, Erisa; Kruse, Andrea; Grunwaldt, Jan‐DierkThe oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio‐source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.Publication Climate on the edge: impacts and adaptation in Ethiopia’s agriculture(2025) Feleke, Hirut Getachew; Amdie, Tesfaye Abebe; Rasche, Frank; Mersha, Sintayehu Yigrem; Brandt, Christian; Younos, Tamim; Lee, Juneseok; Parece, Tammy E.Climate change poses a significant threat to Ethiopian agriculture, impacting both cereal and livestock production through rising temperatures, erratic rainfall, prolonged droughts, and increased pest and disease outbreaks. These challenges intensify food insecurity, particularly for smallholder farmers and pastoralists who rely on climate-sensitive agricultural systems. This systematic review aims to synthesize the impacts of climate change on Ethiopian agriculture, with a specific focus on cereal production and livestock feed quality, while exploring effective adaptation strategies that can support resilience in the sector. The review synthesizes 50 peer-reviewed publications (2020–2024) from the Climate Change Effects on Food Security project, which supports young African academics and Higher Education Institutions (HEIs) in addressing Sustainable Development Goals (SDGs). Using PRISMA guidelines, the review assesses climate change impacts on major cereal crops and livestock feed in Ethiopia and explores adaptation strategies. Over the past 30 years, Ethiopia has experienced rising temperatures (0.3–0.66 °C), with future projections indicating increases of 0.6–0.8 °C per decade resulting in more frequent and severe droughts, floods, and landslides. These shifts have led to declining yields of wheat, maize, and barley, shrinking arable land, and deteriorating feed quality and water availability, severely affecting livestock health and productivity. The study identifies key on-the-ground adaptation strategies, including adjusted planting dates, crop diversification, drought-tolerant varieties, soil and water conservation, agroforestry, supplemental irrigation, and integrated fertilizer use. Livestock adaptations include improved breeding practices, fodder enhancement using legumes and local browse species, and seasonal climate forecasting. These results have significant practical implications: they offer a robust evidence base for policymakers, extension agents, and development practitioners to design and implement targeted, context-specific adaptation strategies. Moreover, the findings support the integration of climate resilience into national agricultural policies and food security planning. The Climate Change Effects on Food Security project’s role in generating scientific knowledge and fostering interdisciplinary collaboration is vital for building institutional and human capacity to confront climate challenges. Ultimately, this review contributes actionable insights for promoting sustainable, climate-resilient agriculture across Ethiopia.Publication Composition of the ileum microbiota is a mediator between the host genome and phosphorus utilization and other efficiency traits in Japanese quail (Coturnix japonica)(2022) Haas, Valentin; Vollmar, Solveig; Preuß, Siegfried; Rodehutscord, Markus; Camarinha-Silva, Amélia; Bennewitz, JörnBackground: Phosphorus is an essential nutrient in all living organisms and, currently, it is the focus of much attention due to its global scarcity, the environmental impact of phosphorus from excreta, and its low digestibility due to its storage in the form of phytates in plants. In poultry, phosphorus utilization is influenced by composition of the ileum microbiota and host genetics. In our study, we analyzed the impact of host genetics on composition of the ileum microbiota and the relationship of the relative abundance of ileal bacterial genera with phosphorus utilization and related quantitative traits in Japanese quail. An F2 cross of 758 quails was genotyped with 4k genome-wide single nucleotide polymorphisms (SNPs) and composition of the ileum microbiota was characterized using target amplicon sequencing. Heritabilities of the relative abundance of bacterial genera were estimated and quantitative trait locus (QTL) linkage mapping for the host was conducted for the heritable genera. Phenotypic and genetic correlations and recursive relationships between bacterial genera and quantitative traits were estimated using structural equation models. A genomic best linear unbiased prediction (GBLUP) and microbial (M)BLUP hologenomic selection approach was applied to assess the feasibility of breeding for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota. Results: Among the 59 bacterial genera examined, 24 showed a significant heritability (nominal p ≤ 0.05), ranging from 0.04 to 0.17. For these genera, six genome-wide significant QTL were mapped. Significant recursive effects were found, which support the indirect host genetic effects on the host’s quantitative traits via microbiota composition in the ileum of quail. Cross-validated microbial and genomic prediction accuracies confirmed the strong impact of microbial composition and host genetics on the host’s quantitative traits, as the GBLUP accuracies based on the heritable microbiota-mediated components of the traits were similar to the accuracies of conventional GBLUP based on genome-wide SNPs. Conclusions: Our results revealed a significant effect of host genetics on composition of the ileal microbiota and confirmed that host genetics and composition of the ileum microbiota have an impact on the host’s quantitative traits. This offers the possibility to breed for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota.Publication Connecting resonance theory with social-ecological thinking: Conceptualizing self-world relationships in the context of sustainability transformations(2025) Brossette, Florian; Bieling, ClaudiaRelationships and interactions between humans and their environment play an important role in sustainability transformations. However, their conceptualization remains a big challenge in current social-ecological research. We propose resonance theory by the German sociologist Hartmut Rosa as a fruitful framework to advance social-ecological thinking. Resonance theory investigates the quality of the relationships between self and world and scrutinizes their relevance for transformations. To illustrate the potentials of resonance theory, we use a vignette approach to cases of landscape stewardship initiatives in the Black Forest Biosphere Reserve in Germany. In distinguishing between self and world and highlighting the role of relationships, resonance theory brings ontological and epistemological clarity, while overcoming a strict dichotomy between social and ecological. We find that resonance theory provides a much needed framework to describe how system-wide transformations emerge from interactions and out of relationships at the individual level. We argue that resonance theory contributes to social-ecological systems thinking by adding the notion of uncontrollability in transformations and shifting the debate on agency towards relationships. Synthesis and applications: This paper demonstrates the meaningfulness of relational paradigms for real-world transformations in theory and practice.Publication Distribution of Al, Fe, Si, and DOC between size fractions mobilised from topsoil horizons with progressing degree of podzolisation(2022) Krettek, Agnes; Stein, Mathias; Rennert, ThiloAluminium, Fe, Si, and dissolved organic C (DOC) accumulate in the subsoil of Podzols after mobilisation in the topsoil. We conducted laboratory experiments with topsoil horizons with progressing degree of podzolisation by irrigation with artificial rainwater at varying intensity and permanence. We monitored the concentrations and distribution of mobilised Al, Fe, Si, and DOC between size fractions (< 1000 Dalton, 1 kDa– < 0.45 µm, and > 0.45 µm). Total eluate concentrations were increased at the onset of the experiments and after the first irrigation interruption, indicating non-equilibrium release. There was no statistical effect of the degree of podzolisation on element concentrations. Release of Al, Fe, and DOC was mostly dominant in the fraction 1 kDa– < 0.45 µm, indicating metals complexed by larger organic molecules and colloids. Silicon released was dominantly monomeric silicic acid < 1 kDa. Particularly with the least podzolised soils, Al and Si concentrations < 1 kDa might have been controlled by short-range ordered aluminosilicates, while their transport in colloidal form was unlikely. Our study pointed to both quantitative and qualitative seasonality of element release during podzolisation, to decoupling of Al and Si release regarding size, and to different minerals that control element release as a function of the degree of podzolisation.Publication Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale?(2022) Neuweiler, Jan E.; Trini, Johannes; Maurer, Hans Peter; Würschum, TobiasBreeding high-yielding, nitrogen-efficient crops is of utmost importance to achieve greater agricultural sustainability. The aim of this study was to evaluate nitrogen use efficiency (NUE) of triticale, investigate long-term genetic trends and the genetic architecture, and develop strategies for NUE improvement by breeding. For this, we evaluated 450 different triticale genotypes under four nitrogen fertilization levels in multi-environment field trials for grain yield, protein content, starch content and derived indices. Analysis of temporal trends revealed that modern cultivars are better in exploiting the available nitrogen. Genome-wide association mapping revealed a complex genetic architecture with many small-effect QTL and a high level of pleiotropy for NUE-related traits, in line with phenotypic correlations. Furthermore, the effect of some QTL was dependent on the nitrogen fertilization level. High correlations of each trait between N levels and the rather low genotype-by-N-level interaction variance showed that generally the same genotypes perform well over different N levels. Nevertheless, the best performing genotype was always a different one. Thus, selection in early generations can be done under high nitrogen fertilizer conditions as these provide a stronger differentiation, but the final selection in later generations should be conducted with a nitrogen fertilization as in the target environment.Publication Do we need post-tree thinning management? Prescribed fire and goat browsing to control woody encroacher species in an Ethiopian savanna(2024) Abate, Teshome; Abebe, Tesfaye; Treydte, AnnaWorldwide, bush encroachment threatens rangeland ecosystem services, including plant biodiversity and forage for livestock. Various control methods for encroaching woody species and restoring herbaceous vegetation exist but have rarely been explored experimentally. We assessed the impact of post-tree thinning management on tree mortality, the herbaceous community, and overall rangeland condition in Borana, an Ethiopian savanna ecosystem. At two 1.4 ha areas of encroached mono-specific Vachellia drepanolobium (whistling thorn) stands, we set up twenty-four 20 × 10 m experimental plots with four post-tree-thinning treatments (goat browsing only (1), prescribed fire (2), fire and goat browsing (3), and control (4) (i.e., no management after tree cutting), with three replications in a complete block design. Over two growing periods, we monitored resulting tree mortality, coppicing, seedling mortality and recruitment, as well as herbaceous layer attributes (diversity, biomass) and overall rangeland condition. All three post-tree thinning management scenarios significantly enhanced tree mortalities, reduced seedling recruitment and increased the abundance of the dominant desirable grass species. Prescribed fire and fire and goat-browsing treatments resulted in significantly greater grass and forb species richness, forb diversity, and biomass, as well as the overall rangeland condition compared to goat browsing only and the control treatment. However, grass species diversity did not respond to treatments. Post-tree management significantly increased tree mortality, reduced seedling recruitment, and increased the abundance of desirable grass species. Our findings strongly suggest that post-thinning management, particularly prescribed fire or a combination of fire and browsing, is highly effective in suppressing woody encroachment and improving biomass and overall rangeland condition.Publication Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material(2021) Galán, Rodrigo José; Bernal-Vasquez, Angela-Maria; Jebsen, Christian; Piepho, Hans-Peter; Thorwarth, Patrick; Steffan, Philipp; Gordillo, Andres; Miedaner, ThomasKey message: Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. Abstract: The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ( ) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm–993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 – 0.61) than GBLUP (0.14 – 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and . However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.Publication Effects of harvest date and ensiling additives on the optimized ensiling of Silphium perfoliatum to prevent faulty fermentation(2024) Baumgart, Marian; Hülsemann, Benedikt; Sailer, Gregor; Oechsner, Hans; Müller, Joachim; Hu, Wei; Zhou, Zhiguo; Zhao, WenqingSilphium perfoliatum , an energy crop with a high fiber content but low concentrations of fermentable carbohydrates, presents challenges for complete fermentation in biogas production. To overcome this, a bioeconomic approach proposes the use of the fibers for paper and board production, which requires high-quality silage with minimal butyric acid, which affects the marketability of the fibers. This study aims to optimize the silaging process of Silphium perfoliatum by investigating the effects of harvest date, bacterial cultures and additives on fermentation results. Laboratory experiments were conducted to evaluate the effect of three harvest dates on fermentation acid composition, with a focus on increasing lactic acid production to inhibit butyric acid formation. Results indicate that an early harvest date (early September) is critical for achieving stable fermentation and minimizing ensiling losses. The addition of sugar-rich additives, such as syrup, was found to be essential, especially for later harvest dates. Despite these interventions, a late harvest (early November) consistently resulted in suboptimal fermentation. The results suggest that optimizing harvest timing and incorporating appropriate additives are key strategies for producing high quality silage and ensuring the suitability of Silphium perfoliatum fibers for industrial applications.Publication Exploring the plausibility of inoculated cowpeas as a climate adaptation strategy for Namibian smallholder farmers(2025) Rasche, Livia; Katjana, Johannes; Jantke, Kerstin; Uchezuba, David; Schneider, Uwe A.; Lombardi, MariarosariaIncreased cultivation of cowpeas is a possible adaptation option for Namibian farmers under changing climatic conditions. Using inoculated cowpeas can potentially double the yields under favorable climate conditions. But is such a potentially beneficial agricultural adaptation technique likely to be adopted? We surveyed 90 cowpea farmers from 30 villages in the Kavango region of northern Namibia on their households and farms, access to institutions and services, food consumption and preferences, and perceptions of climate change. Our survey reveals that smallholder farmers will not readily adopt the new technology. At most, about 50% of farmers can be convinced by new information to change their agricultural activities. When specifically asked about their willingness to grow inoculated cowpeas, almost all farmers responded that they would be willing to do so. However, the farmers are reluctant to allocate more land for cowpea cultivation, mainly because harvesting is very time and labor-intensive. The study shows that technology assessments should be conducted in combination with socio-economic assessments to realistically assess the potential success of proposed adaptation measures, as the extent to which a new technology may be adopted is an essential indicator for justifying funding of new technologies or adaptation programs.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors(2021) El Hassouni, Khaoula; Sielaff, Malte; Curella, Valentina; Neerukonda, Manjusha; Leiser, Willmar; Würschum, Tobias; Schuppan, Detlef; Tenzer, Stefan; Longin, C. Friedrich H.Amylase trypsin inhibitors (ATIs) are important allergens in baker’s asthma and suspected triggers of non-celiac wheat sensitivity (NCWS) inducing intestinal and extra-intestinal inflammation. As studies on the expression and genetic architecture of ATI proteins in wheat are lacking, we evaluated 149 European old and modern bread wheat cultivars grown at three different field locations for their content of eight ATI proteins. Large differences in the content and composition of ATIs in the different cultivars were identified ranging from 3.76 pmol for ATI CM2 to 80.4 pmol for ATI 0.19, with up to 2.5-fold variation in CM-type and up to sixfold variation in mono/dimeric ATIs. Generally, heritability estimates were low except for ATI 0.28 and ATI CM2. ATI protein content showed a low correlation with quality traits commonly analyzed in wheat breeding. Similarly, no trends were found regarding ATI content in wheat cultivars originating from numerous countries and decades of breeding history. Genome-wide association mapping revealed a complex genetic architecture built of many small, few medium and two major quantitative trait loci (QTL). The major QTL were located on chromosomes 3B for ATI 0.19-like and 6B for ATI 0.28, explaining 70.6 and 68.7% of the genotypic variance, respectively. Within close physical proximity to the medium and major QTL, we identified eight potential candidate genes on the wheat reference genome encoding structurally related lipid transfer proteins. Consequently, selection and breeding of wheat cultivars with low ATI protein amounts appear difficult requiring other strategies to reduce ATI content in wheat products.Publication Genetic dissection of drought tolerance in maize through GWAS of agronomic traits, stress tolerance indices, and phenotypic plasticity(2025) Li, Ronglan; Li, Dongdong; Guo, Yuhang; Wang, Yueli; Zhang, Yufeng; Li, Le; Yang, Xiaosong; Chen, Shaojiang; Würschum, Tobias; Liu, Wenxin; Han, De-GuoDrought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and water-deficit (WD) conditions, (2) stress tolerance indices of these traits, and (3) phenotypic plasticity, using a multi-parent doubled haploid (DH) population assessed in multi-environment trials. Genome-wide association studies (GWAS) identified 130, 171, and 71 quantitative trait loci (QTL) for the three groups of phenotypes, respectively. Only one QTL was shared among all trait groups, 25 between stress indices and agronomic traits, while the majority of QTL were specific to their group. Functional annotation of candidate genes revealed distinct pathways of the three phenotypic groups. Candidate genes under WD conditions were enriched for stress response and epigenetic regulation, while under WW conditions for protein synthesis and transport, RNA metabolism, and developmental regulation. Stress tolerance indices were enriched for transport of amino/organic acids, epigenetic regulation, and stress response, whereas plasticity showed enrichment for environmental adaptability. Transcriptome analysis of 26 potential candidate genes showed tissue-specific drought responses in leaves, ears, and tassels. Collectively, these results indicated both shared and independent genetic mechanisms underlying drought tolerance, providing novel insights into the complex phenotypes related to drought tolerance and guiding further strategies for molecular breeding in maize.Publication The importance of individual movement and feeding behaviour for long-distance seed dispersal by red deer: a data-driven model(2020) Wright, Stephen J.; Heurich, Marco; Buchmann, Carsten M.; Böcker, Reinhard; Schurr, Frank M.Background: Long-distance seed dispersal (LDD) has strong impacts on the spatiotemporal dynamics of plants. Large animals are important LDD vectors because they regularly transport seeds of many plant species over long distances. While there is now ample evidence that behaviour varies considerably between individual animals, it is not clear to what extent inter-individual variation in behaviour alters seed dispersal by animals. Methods: We study how inter-individual variation in the movement and feeding behaviour of one of Europe’s largest herbivores (the red deer, Cervus elaphus) affects internal seed dispersal (endozoochory) of multiple plant species. We combine movement data of 21 individual deer with measurements of seed loads in the dung of the same individuals and with data on gut passage time. These data serve to parameterize a model of passive dispersal that predicts LDD in three orientations (horizontal as well as upward and downward in elevation). With this model we investigate to what extent per-seed probabilities of LDD and seed load vary between individuals and throughout the vegetation period (May–December). Subsequently, we test whether per-seed LDD probability and seed load are positively (or negatively) correlated so that more mobile animals disperse more (or less) seeds. Finally, we examine whether non-random associations between per-seed LDD probability and seed load affect the LDD of individual plant species. Results: The studied deer dispersed viable seeds of at least 62 plant species. Deer individuals varied significantly in per-seed LDD probability and seed loads. However, more mobile animals did not disperse more or less seeds than less mobile ones. Plant species also did not differ significantly in the relationship between per-seed LDD probability and seed load. Yet plant species differed in how their seed load was distributed across deer individuals and in time, and this caused their LDD potential to differ more than twofold. For several plant species, we detected non-random associations between per-seed LDD probability and seed load that generally increased LDD potential. Conclusions: Inter-individual variation in movement and feeding behaviour means that certain deer are substantially more effective LDD vectors than others. This inter-individual variation reduces the reliability of LDD and increases the sensitivity of LDD to the decline of deer populations. Variation in the dispersal services of individual animals should thus be taken into account in models in order to improve LDD projections.