Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "13"
Now showing 1 - 20 of 79
- Results Per Page
- Sort Options
Publication Approaches to increase digestibility of Bangladesh ruminant feed resources in order to mitigate enteric methane production(2024) Bashar, Muhammad Khairul; Rodehutscord, MarkusMultiple analyses have shown that the rising human population, urbanization, and consumer preferences affect the demand for livestock products in developing countries. Concurrently, human population and urbanisation growth are reducing the likelihood of newly cultivated land producing feeds or restoring damaged pastures. Using low-quality roughage more efficiently is an option, but such roughages have drawbacks, including high structural carbohydrate and low nitrogen contents, which lead to poor palatability and nutrient utilisation including emission of methane (CH4) that is harmful to the environment and a loss of energy to the animal. Using commonly accessible legumes and tree foliage could be a possibility to address the need for N and CH4 mitigation due to their high crude protein and secondary compound contents. In order to evaluate the potential of specific combinations of roughages, concentrates, and other feeds, it is necessary to determine the feeding values, in vitro ruminal fermentation, and CH4 production of single feeds, as well as the promising interaction (associative) effects between single feeds when combinded in a ration. This may allow for formulating a better balanced total mixed ration (TMR) for ruminants, which was the main goal of the present doctoral study. Eighteen feedstuffs from Bangladesh were chosen, including roughages such as crop residues (rice straw, urea molasses treated straw and maize stover), silages (Napier silage and Maize silage), common grasses (German grass, Para grass and Napier grass) and leguminous fodder (Ipil-ipil, Glicidia, Alfalfa hay and Moringa tops) and concentrates (crushed wheat, crushed maize, Wheat bran, Kashari bran, and Rice bran). In Study 1, the single feeds were characterized by comprehensive chemical analysis and in vitro production of total gas and methane using the Hohenheim gas test. Based on the results of Study 1, rice straw, German grass, Napier silage, and maize silage were used in Study 2 and incubated in vitro alone or after substitution by Ipil-ipil and Gliricidia at levels of 10%, 20%, 30%, and 40%, respectively. In Study 3, mixtures of roughages and leguminous fodder (rice straw + 40% Ipil-ipil, German grass + 10% Ipil-ipil, Napier silage + 30% Ipil ipil, and maize silage + 30% Ipil-ipil) were combined with single concentrates in order to identify the most promising mixtures in regard to digestibility and methane production. Eventually, 24 TMR were formulated using six for each type of roughage in Study 4. These TMR were comprised of 60% of the same combination of roughage as used in Study 3 and 40% of various combinations of concentrates including TMR-1 (60% rice bran + 10% wheat bran + 30% kashari bran), TMR-2 (30% rice bran + 10% wheat bran + 60% kashari bran), TMR-3 (10% rice bran + 60% wheat bran + 30% kashari bran), TMR-4 (10% rice bran + 30% wheat bran + 60% kashari bran), TMR-5 (60% rice bran + 30% wheat bran + 10 kashari bran), and TMR-6 (30% rice bran + 60% wheat bran + 10% kashari bran) in order to identify suitable TMR for maximising ruminal fermentation and reducing the CH4 production in vitro. In all studies, the total gas production (GP), digestibility of organic matter (dOM), metabolisable energy (ME), and net energy for lactation (NEL) were determined after incubating 200 mg of feed with a rumen fluid-buffer solution for 72 hours. In addition, the CH4 concentration in the produced gas was measured after incubating 120 mg of feed for 24 hours. Measured values of the mixed feed were compared to estimated values, where the estimated values were weighted means of the values of the individual feeds, to determine the associative effects between the feed ingredients (Study 2 and Study 4). In Study 1, the concentration of acid detergent fibre (ADF), neutral detergent fibre (NDF), and acid detergent lignin (ADL) was the lowest in leguminous fodder while the crude protein (CP) concentration was the hightest, followed by the common grasses and the silages. The crop residues showed the lowest CP and the highest cell wall fraction concentrations. The dOM, ME, and NEL of crushed wheat and crushed maize were significantly higher (p<0.05) than those of other feedstuffs. The same differences were found (p<0.05) for CH4 concentration (% of GP) and CH4 production (L CH4/kg dOM). The dOM and ME of German grass and Ipil-ipil were higher (p<0.05), whereas the CH4 concentration and CH4 production were lower compared to that of crop residues and other common grasses. The CH4 production of single feeds decreased with increasing concentrations of CP, ADF, and ADL, whereas it increased with NDF concentration. These findings enabled development of more balanced diets for ruminants with the aim of improved digestibility and reduced CH4 emission while making use of widely available feed resources in Bangladesh. Study 2 aimed to evaluate the in vitro ruminal fermentation, CH4 production, and associative effects between low-quality roughages and CP supplements. The gas production after 24 hours (GP24) and rumen fermentation rate increased (p<0.05) with increasing addition of Ipil-ipil to rice straw. It also resulted in a gradual increase of dOM and ME (p<0.05) of the mixture, reaching maximum values (59.1% and 7.60 MJ ME/kg DM) and maximum reductions in CH4 concentration and CH4/dOM (6.9% and 11.7%) compared to the control with Ipil-ipil addition at 40% of DM. When Ipil-ipil was added at 30% to Napier silage, the same trend was observed for dOM and ME (56.5%, and 7.55 MJ ME/kg DM) and CH4 concentration and CH4/dOM (5.3% and 13.3%). Ipil-ipil did not significantly interact with high quality roughages such as German grass and maize silage. Increasing the addition of Gliricidia to the roughages in Study 2 led to a decrease in GP24, dOM, ME, and CH4 production. The highest levels of the associative effects (p<0.05) were seen when 40% Ipil-ipil was added to rice straw and 30% was added to Napier silage. In conclusion, adding Ipil-ipil to low-quality roughages is superior to Gliricidia and showed promising results, with the ranking as follows: rice straw + 40% Ipil-ipil > Napier silage + 30% Ipil-ipil > maize silage + 30% Ipil-ipil > German gras + 10% Ipil-ipil. Study 3 and Study 4 had the overarching purpose to determine which combination of single concentrates and combinations of concentrates with roughage produced the best mixed feed in terms of rumen fermentation, CH4 reduction potential, and associative effect. The CP and non-stach carbohydrate contents of the Ipil-ipil-based mixed feed was enhanced by adding Wheat bran and Kashari bran as single concentrates, which had a favourable effect on rumen fermentation and gas production but had the opposite effect on CH4 production when compared to the addition of Rice bran. In Study 4, TMR were formulated using roughages and Ipil-ipil and addition of Wheat bran, Kashari bran, and Rice bran in various combinations. The TMR based on German grass and maize silage with specific bran combinations showed significant reductions in in vitro CH4 production, CH4 concentration, and CH4/dOM while maximising GP, dOM, ME, and the associative effects. To conclude, the results of chemical analyses and in vitro fermentation studies showed that specific combinations of roughages, protein feeds, and by-products available in Bangladesh have the potential to formulate rations for cattle that help making livestock production more sustainable. The results may be also relevant for other developing nations. It is suggested to verify the results of the present project by animal trials at local conditions.Publication Arbuscular mycorrhizal fungi-based bioremediation of mercury: insights from zinc and cadmium transporter studies(2023) Guo, Yaqin; Martin, Konrad; Hrynkiewicz, Katarzyna; Rasche, FrankPhytoremediation, a sustainable approach for rehabilitating mercury (Hg)-contaminated soils, can be enhanced by arbuscular mycorrhizal (AM) fungi, which promote plant growth and metal uptake, including Hg, in contaminated soils. Hg, despite lacking a biological function in plants, can be absorbed and translocated using Zn and/or Cd transporters, as these elements belong to the same group in the periodic table (12/2B). In fact, the specific transporters of Hg in plant roots remain unknown. This study is therefore to provide fundamental insights into the prospect to remediate Hg-contaminated soils, with a focus on the role of AM fungi. The hypothesis posits that Hg uptake in plants may be facilitated by transporters responsible for Zn/Cd, affected by AM fungi. The Scopus database was used to collect studies between 2000 and 2022 with a focus on the ecological role of AM fungi in environments contaminated with Zn and Cd. Particular emphasis was laid on the molecular mechanisms involved in metal uptake and partitioning. The study revealed that AM fungi indeed regulated Zn and/or Cd transporters, influencing Zn and/or Cd uptake in plants. However, these effects vary significantly based on environmental factors, such as plant and AM fungi species and soil conditions (e.g., pH, phosphorus levels). Given the limited understanding of Hg remediation, insights gained from Zn and Cd transporter systems can guide future Hg research. In conclusion, this study underscores the importance of considering environmental factors and provides fundamental insights into the potential of Hg phytoremediation with the assistance of AM fungi.Publication Assessing impacts of crop area expansion and crop-livestock integration on ecosystem functions in African savannas using the coupled LUCIA and LIVSIM models(2025) Gutai, Benjamin; Marohn, Carsten; Bateki, Christian Adjogo; Asch, FolkardLarge-scale land use change (LUC) of African Guinea savannas to crop fields is expected to cause negative impacts on ecosystem functions (ESF) and long term land productivity. The complex interactions of key processes in savannas evoked by LUC calls for a process-based modelling approach. We employed the dynamically coupled Land Use Change Impact Assessment (LUCIA) model and the Livestock Simulator (LIVSIM) which represent LUC impacts on soil processes, landscape-scale matter fluxes, seasonal grass and crop growth, and livestock nutrition, production and reproduction, depending on seasonal feed availability and quality on accessible pastures. For a rangeland in Borana, Ethiopia, two different LUC scenarios were evaluated in comparison to the baseline of traditional pasture-based land use. In the intensive LUC scenario 52% of grassland was converted into unfertilized maize fields, inaccessible for livestock. The integrated LUC scenario of the same grassland conversion rate allowed feeding maize straw and provided high-quality feed reserves from seasonally managed pastures. LUC in the intensive LUC scenario led to declining yields in the second year after conversion. Feed production on the remaining rangeland patches was insufficient for livestock nutrition, causing drops of herd body weight and herd size particularly in drought years. Resilience of herd performance to LUC was enhanced in the integrated LUC scenario when feeding maize straw and high-quality feed reserves. In both LUC scenarios, topsoil organic carbon storage decreased after ploughing shrub grassland for cultivation, and so did soil water storage capacity due to soil pore destruction. Soil erosion of less than one cm after 10 years occurred under cultivation. The simulation results indicated that the well validated model framework could predict impacts of LUC and simple crop-livestock integration on savanna ESFs, grass growth dynamics and livestock production during seasonal and inter-annual rainfall variation. This study lays the foundation for further land use scenario simulations to improve the understanding of benefits and risks caused by savanna grassland conversion.Publication Assessment of different methods to determine NH₃ emissions from small field plots after fertilization(2025) Götze, Hannah; Brokötter, Julian; Frößl, Jonas; Kelsch, Alexander; Kukowski, Sina; Pacholski, Andreas Siegfried; Anderson, William A.Ammonia (NH₃) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH₃ emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific application limitations of NH₃ emission measurement techniques and a high variability in method performance between studies, in particular from small plots. Therefore, the aim of this study was the assessment of measurement methods for ammonia emissions from replicated small plots. Methods were evaluated in 18 trials on six sites in Germany (2021–2022). Urea was applied to winter wheat as an emission source. Two small-plot methods were employed: inverse dispersion modelling (IDM) with atmospheric concentrations obtained from Alpha samplers and the dynamic chamber Dräger tube method (DTM). Cumulative NH₃ losses assessed by each method were compared to the results of the integrated horizontal flux (IHF) method using Alpha samplers (Alpha IHF) as a micrometeorological reference method applied in parallel large-plot trials. For validation, Alpha IHF was also compared to IHF/ZINST with Leuning passive samplers. Cumulative NH₃ emissions assessed using Alpha IHF and DTM showed good agreement, with a relative root mean square error (rRMSE) of 11%. Cumulative emissions assessed by Leuning IHF/ZINST deviated from Alpha IHF, with an rRMSE of 21%. For low-wind-speed and high-temperature conditions, NH3 losses detected with Alpha IDM had to be corrected to give acceptable agreement (rRMSE 20%, MBE +2 kg N ha−1). The study shows that quantification of NH₃ emissions from small plots is feasible. Since DTM is constrained to specific conditions, we recommend Alpha IDM, but the approach needs further development.Publication Automatic classification of submerged macrophytes at Lake Constance using laser bathymetry point clouds(2024) Wagner, Nike; Franke, Gunnar; Schmieder, Klaus; Mandlburger, Gottfried; Stateczny, AndrzejSubmerged aquatic vegetation, also referred to as submerged macrophytes, provides important habitats and serves as a significant ecological indicator for assessing the condition of water bodies and for gaining insights into the impacts of climate change. In this study, we introduce a novel approach for the classification of submerged vegetation captured with bathymetric LiDAR (Light Detection And Ranging) as a basis for monitoring their state and change, and we validated the results against established monitoring techniques. Employing full-waveform airborne laser scanning, which is routinely used for topographic mapping and forestry applications on dry land, we extended its application to the detection of underwater vegetation in Lake Constance. The primary focus of this research lies in the automatic classification of bathymetric 3D LiDAR point clouds using a decision-based approach, distinguishing the three vegetation classes, (i) Low Vegetation, (ii) High Vegetation, and (iii) Vegetation Canopy, based on their height and other properties like local point density. The results reveal detailed 3D representations of submerged vegetation, enabling the identification of vegetation structures and the inference of vegetation types with reference to pre-existing knowledge. While the results within the training areas demonstrate high precision and alignment with the comparison data, the findings in independent test areas exhibit certain deficiencies that are likely addressable through corrective measures in the future.Publication The baobab (Adansonia digitata L.) in Southern Kenya–a study on status, distribution, use and importance in Taita–Taveta County(2020) Fischer, Sahrah; Jäckering, Lisa; Kehlenbeck, KatjaBaobab (Adansonia digitata L.) is a multipurpose, drought resistant, wild fruit tree, endemic to arid and semi-arid lands of Sub-Saharan Africa. Baobab populations have been showing a lack of regeneration, and therefore causes concern for the species survival. This study investigated the state, distribution and use of baobabs in an under-researched population in Kenya, to identify the potential for further use and development of baobab resources. A baobab population was chosen in Taita–Taveta County, covering a sample area of 2015 km2. A systematic stratified transect survey was done to map baobab distribution using 49 transects (0.5 × 3 km each). The diameter at breast height and other indicators were measured on all baobabs in the transects to assess population status and health. A household survey (n = 46) and focus group discussions (n = 12) were done following the transect survey to gain an idea on the uses and distribution of baobab. In total, 432 baobab trees were measured and recorded in the research area of 2015 km2. The baobabs grew in two clusters (i.e., areas with a baobab density of ≥0.08 baobabs/ha). Both clusters showed rejuvenating populations. The main factors identified by the respondents, positively and negatively influencing baobab distribution were environmental factors, wildlife, human impact and commercial value. The study area shows a great potential for baobab to become an important part of the diet, due to its current use as an emergency food during food scarce times, and the relatively healthy and stable rejuvenating populations.Publication Bayesian‐optimized experimental designs for estimating the economic optimum nitrogen rate: a model‐averaging approach(2025) Matavel, Custódio Efraim; Meyer‐Aurich, Andreas; Piepho, Hans‐PeterField experiments play a crucial role in optimizing nutrient application strategies and determining the economic optimum nitrogen rate (EONR), aiding stakeholders in agricultural decision‐making. These experiments tailor agricultural input management to maximize efficiency and sustainability, ultimately improving farm economics. However, the optimal setup of field experiments remains an ongoing debate, particularly regarding economic considerations such as the selection of treatment levels (design points), their spatial arrangement, and the number of replications required for statistical validity and cost‐effectiveness. This study optimizes field experiments for estimating the EONR using a model‐averaging approach within a Bayesian framework. We employed Bayesian inference and the No‐U‐turn sampler to integrate model averaging across multiple yield response models, improving robustness in EONR estimation. Stochastic optimization, specifically simultaneous perturbation stochastic approximation, was used to optimize experimental designs, and their performance was evaluated through Monte Carlo simulations. Our results show that optimized experimental designs significantly improve the precision of EONR estimates. Designs incorporating higher number of nitrogen levels provided the best trade‐off between accuracy and efficiency, minimizing bias and mean squared error. Even with a fixed total number of plots (120), increasing the number of design points resulted in lower variance, demonstrating the efficiency of well‐structured experimental designs. This research lays the groundwork for future developments in experimental methodologies with wide‐ranging implications for agricultural economics and policymaking, ultimately supporting better‐informed decision‐making. Future work should integrate environmental constraints and account for real‐world variability in treatment replication to further refine experimental optimization strategies.Publication Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra(2022) Carneiro de Melo Moura, Carina; Setyaningsih, Christina A.; Li, Kevin; Merk, Miryam Sarah; Schulze, Sonja; Raffiudin, Rika; Grass, Ingo; Behling, Hermann; Tscharntke, Teja; Westphal, Catrin; Gailing, OliverBackground: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps , via dual-locus DNA metabarcoding (ITS2 and rbcL ) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. Results: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. Conclusions: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.Publication Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials(2021) Laidig, F.; Feike, T.; Hadasch, S.; Rentel, D.; Klocke, B.; Miedaner, T.; Piepho, H. P.Key message: Breeding progress of resistance to fungal wheat diseases and impact of disease severity on yield reduction in long-term variety trials under natural infection were estimated by mixed linear regression models. Abstract: This study aimed at quantifying breeding progress achieved in resistance breeding towards varieties with higher yield and lower susceptibility for 6 major diseases, as well as estimating decreasing yields and increasing disease susceptibility of varieties due to ageing effects during the period 1983–2019. A further aim was the prediction of disease-related yield reductions during 2005–2019 by mixed linear regression models using disease severity scores as covariates. For yield and all diseases, overall progress of the fully treated intensity (I2) was considerably higher than for the intensity without fungicides and growth regulators (I1). The disease severity level was considerably reduced during the study period for mildew (MLD), tan spot (DTR) and Septoria nodorum blotch (ear) (SNB) and to a lesser extent for brown (leaf) rust (BNR) and Septoria tritici blotch (STB), however, not for yellow/stripe rust (YLR). Ageing effects increased susceptibility of varieties strongly for BNR and MLD, but were comparatively weak for SNB and DTR. Considerable yield reductions under high disease severity were predicted for STB (−6.6%), BNR (−6.5%) and yellow rust (YLR, −5.8%), but lower reductions for the other diseases. The reduction for resistant vs. highly susceptible varieties under high severity conditions was about halved for BNR and YLR, providing evidence of resistance breeding progress. The empirical evidence on the functional relations between disease severity, variety susceptibility and yield reductions based on a large-scale multiple-disease field trial data set in German winter wheat is an important contribution to the ongoing discussion on fungicide use and its environmental impact.Publication Breeding progress of nitrogen use efficiency of cereal crops, winter oilseed rape and peas in long-term variety trials(2024) Laidig, Friedrich; Feike, T.; Lichthardt, C.; Schierholt, A.; Piepho, Hans-PeterBreeding and registration of improved varieties with high yield, processing quality, disease resistance and nitrogen use efficiency (NUE) are of utmost importance for sustainable crop production to minimize adverse environmental impact and contribute to food security. Based on long-term variety trials of cereals, winter oilseed rape and grain peas tested across a wide range of environmental conditions in Germany, we quantified long-term breeding progress for NUE and related traits. We estimated the genotypic, environmental and genotype-by-environment interaction variation and correlation between traits and derived heritability coefficients. Nitrogen fertilizer application was considerably reduced between 1995 and 2021 in the range of 5.4% for winter wheat and 28.9% for spring wheat while for spring barley it was increased by 20.9%. Despite the apparent nitrogen reduction for most crops, grain yield (GYLD) and nitrogen accumulation in grain (NYLD) was increased or did not significantly decrease. NUE for GYLD increased significantly for all crops between 12.8% and 35.2% and for NYLD between 8% and 20.7%. We further showed that the genotypic rank of varieties for GYLD and NYLD was about equivalent to the genotypic rank of the corresponding traits of NUE, if all varieties in a trial were treated with the same nitrogen rate. Heritability of nitrogen yield was about the same as that of grain yield, suggesting that nitrogen yield should be considered as an additional criterion for variety testing to increase NUE and reduce negative environmental impact.Publication Challenges of green production of 2,5‐furandicarboxylic acid from bio‐derived 5‐hydroxymethylfurfural: Overcoming deactivation by concomitant amino acids(2022) Neukum, Dominik; Baumgarten, Lorena; Wüst, Dominik; Sarma, Bidyut Bikash; Saraçi, Erisa; Kruse, Andrea; Grunwaldt, Jan‐DierkThe oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio‐source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.Publication Climate on the edge: impacts and adaptation in Ethiopia’s agriculture(2025) Feleke, Hirut Getachew; Amdie, Tesfaye Abebe; Rasche, Frank; Mersha, Sintayehu Yigrem; Brandt, Christian; Younos, Tamim; Lee, Juneseok; Parece, Tammy E.Climate change poses a significant threat to Ethiopian agriculture, impacting both cereal and livestock production through rising temperatures, erratic rainfall, prolonged droughts, and increased pest and disease outbreaks. These challenges intensify food insecurity, particularly for smallholder farmers and pastoralists who rely on climate-sensitive agricultural systems. This systematic review aims to synthesize the impacts of climate change on Ethiopian agriculture, with a specific focus on cereal production and livestock feed quality, while exploring effective adaptation strategies that can support resilience in the sector. The review synthesizes 50 peer-reviewed publications (2020–2024) from the Climate Change Effects on Food Security project, which supports young African academics and Higher Education Institutions (HEIs) in addressing Sustainable Development Goals (SDGs). Using PRISMA guidelines, the review assesses climate change impacts on major cereal crops and livestock feed in Ethiopia and explores adaptation strategies. Over the past 30 years, Ethiopia has experienced rising temperatures (0.3–0.66 °C), with future projections indicating increases of 0.6–0.8 °C per decade resulting in more frequent and severe droughts, floods, and landslides. These shifts have led to declining yields of wheat, maize, and barley, shrinking arable land, and deteriorating feed quality and water availability, severely affecting livestock health and productivity. The study identifies key on-the-ground adaptation strategies, including adjusted planting dates, crop diversification, drought-tolerant varieties, soil and water conservation, agroforestry, supplemental irrigation, and integrated fertilizer use. Livestock adaptations include improved breeding practices, fodder enhancement using legumes and local browse species, and seasonal climate forecasting. These results have significant practical implications: they offer a robust evidence base for policymakers, extension agents, and development practitioners to design and implement targeted, context-specific adaptation strategies. Moreover, the findings support the integration of climate resilience into national agricultural policies and food security planning. The Climate Change Effects on Food Security project’s role in generating scientific knowledge and fostering interdisciplinary collaboration is vital for building institutional and human capacity to confront climate challenges. Ultimately, this review contributes actionable insights for promoting sustainable, climate-resilient agriculture across Ethiopia.Publication Combined bioenergy and food potential of Opuntia ficus-indica grown on marginal land in rural Mexico(2024) Varela Pérez, Paola; Winkler, Bastian; Röcker, Philip; von Cossel, Moritz; Rubiera González, FernandoOpuntia ficus-indica (cactus pear) emerged as a promising crop for sustainable bioenergy production on marginal agricultural land, mitigating competition with food crops and lowering the risk of other indirect land use changes. In this study, the bioenergy potential is investigated of cactus pear residues within a smallholder farming context of Nopaltepec, a rural municipality in Central Mexico. Nopaltepec is a native environment of cactus pear and shows an annual production volume of 30 Gg of fresh matter. A bottom-up approach employing semi-structured interviews ( n = 16) was utilized to assess the feasibility of transforming the pruning residues of cactus pear into a viable bioenergy source. The results indicate a substantial bioenergy potential, with 27 Mg of fresh matter biomass (equivalent to 9720 m 3 biogas) per hectare obtainable annually without compromising fruit yields. Moreover, the digestate produced through anaerobic digestion can be recycled as biofertilizer, offering economic and ecological advantages to smallholders. Notably, farmers expressed keen interest in integrating this technology into their agricultural systems. This research underscores the potential of cactus pear residues for developing a decentralized bioenergy sector and provides valuable ideas for future bottom-up assessments in rural communities like Nopaltepec.Publication Combined butyric acid and methane production from grass silage in a novel green biorefinery concept(2022) Steinbrenner, Jörg; Müller, Joachim; Oechsner, HansIn a Green Biorefinery, grass silage can be a source for lactic acid, proteins, amino acids and fibres. Processing residues can be used for anaerobic digestion and methane production. But by changing the ensiling conditions, butyric acid fermentation can be achieved. That makes grass silage also a potential substrate for a combined butyric acid and methane production. The objective of this study was to determine the potential of butyric acid production at different ensiling conditions applied to grass and measuring the methane yield potential of solid residues after a separation step. The highest butyric acid concentration in the produced press juice was 20.1 ± 4.5 g kg⁻¹ and was achieved by carbonated lime addition and a reduced dry matter content after 90 days at mesophilic storage conditions. This resulted in a theoretical butyric acid yield of 332 kg ha⁻¹ a⁻¹. For the fibrous leftover press cake, a theoretical methane production potential of 2778 m3CH4 ha⁻¹ a⁻¹ was reached. The results show that theoretically a combined production of butyric acid and methane can be realised in a Green Biorefinery concept.Publication Comparative effects of individual and consortia plant growth promoting bacteria on physiological and enzymatic mechanisms to confer drought tolerance in maize (Zea mays L.)(2021) Saleem, Muhammad; Nawaz, Fahim; Hussain, Muhammad Baqir; Ikram, Rao MuhammadMitigation strategies based on plant–microbe interactions to increase the performance of plants under water-deficit conditions are well documented. However, little is known about a suitable consortium of bacterial inoculants and underlying physiological and enzymatic events to improve drought tolerance in maize. We performed laboratory and pot experiments to understand the synergistic interactions among plant growth-promoting bacteria to alleviate the drought-induced damages in maize. Initially, ten bacterial strains were evaluated for their osmotic stress tolerance capacity by growing them in a media containing 0, 10, 20, and 30% polyethylene glycol (PEG-6000). Also, the seeds of a drought tolerant (NK-6654) and sensitive (SD-626) maize cultivar were inoculated with these bacterial strains in the first pot experiment to determine their effects on the growth and physiological processes. Later, in the second pot experiment, the best performing inoculants were selected to study the individual and synergistic effects of bacterial inoculation to confer drought tolerance in maize. Our findings showed that the inoculation with tolerant strains resulted in higher photosynthetic activity (25–39%), maintenance of leaf water status (14–18%) and pigments (27–32%), and stimulation of antioxidant machinery (28–38%) than no inoculation in water-stressed maize seedlings. Moreover, the treatment with bacteria consortia further stimulated the drought protective mechanisms and resulted in higher efficiency of photosynthetic (47–61%) and antioxidant systems (42–62%) than the individual inoculants under water-deficit conditions. We conclude that the inoculation with microbial consortia regulates water uptake, photosynthetic performance, and stress metabolites to minimize drought-induced damages in maize.Publication Comparative ungulate diversity and biomass change with human use and drought: implications for community stability and protected area prioritization in African savannas(2025) Bartzke, Gundula S.; Ogutu, Joseph O.; Piepho, Hans‐Peter; Bedelian, Claire; Rainy, Michael E.; Kruska, Russel L.; Worden, Jeffrey S.; Kimani, Kamau; McCartney, Michael J.; Ng'ang'a, Leah; Kinoti, Jeniffer; Njuguna, Evanson C.; Wilson, Cathleen J.; Lamprey, Richard; Hobbs, Nicholas Thompson; Reid, Robin S.Drought and human use may alter ungulate diversity and biomass in contrasting ways. In African savannas, resource‐dependent grazers such as wildebeest (Connochaetes taurinus) and zebra (Equus quagga) may decline or disperse as resources decline, opening space for more drought‐tolerant species such as gazelles (Eudorcas and Nanger) and impala (Aepyceros melampus). This shift can increase species richness, evenness, and overall ungulate diversity. Although higher diversity may stabilize ungulate communities, it may be associated with lower biomass (the total body mass of all individuals in a community), which in turn affects vegetation structure and composition, nutrient cycling, energy flows, and other organisms in savannas. While ungulate biomass often declines during drought or in areas of intense human use, the effects on diversity changes under low‐to‐moderate human use remain less clear. Our fine‐scale censuses in the Maasai Mara National Reserve and adjacent pastoral lands in Kenya showed that ungulate biomass declined more than diversity in the 1999 drought year. In the normal rainfall year of 2002, diversity peaked along the reserve boundary, but species richness leveled off in the drought year. Biomass peaked in the reserve in both census years, and migratory ungulates moved further into the reserve in the drought year, where diversity declined. These findings suggest that core protected areas are crucial for maintaining ungulate biomass, while transition zones from protected and pastoral lands support higher diversity unless drought reduces species richness.Publication Complementary ecosystem services from multiple land uses highlight the importance of tropical mosaic landscapes(2023) Raveloaritiana, Estelle; Wurz, Annemarie; Osen, Kristina; Soazafy, Marie Rolande; Grass, Ingo; Martin, Dominic Andreas; Bemamy, Claudine; Ranarijaona, Hery Lisy Tiana; Borgerson, Cortni; Kreft, Holger; Hölscher, Dirk; Rakouth, Bakolimalala; Tscharntke, TejaTropical agricultural landscapes often consist of a mosaic of different land uses, yet little is known about the spectrum of ecosystem service bundles and materials they provide to rural households. We interviewed 320 households on the different benefits received from prevalent land-use types in north-eastern Madagascar (old-growth forests, forest fragments, vanilla agroforests, woody fallows, herbaceous fallows, and rice paddies) in terms of ecosystem services and plant uses. Old-growth forests and forest fragments were reported as important for regulating services (e.g. water regulation), whilst fallow lands and vanilla agroforests as important for provisioning services (food, medicine, fodder). Households reported the usage of 285 plant species (56% non-endemics) and collected plants from woody fallows for varying purposes, whilst plants from forest fragments, predominantly endemics, were used for construction and weaving. Multiple land-use types are thus complementary for providing ecosystem services, with fallow lands being particularly important. Hence, balancing societal needs and conservation goals should be based on diversified and comprehensive land management.Publication Complex European invasion history of Anoplophora glabripennis (Motschulsky): new insights in its population genomic differentiation using genotype-by-sequencing(2024) Haeussermann, Iris; Hasselmann, MartinAnthropogenic activities like trade facilitate increasing rates of biological invasions. Asian long-horned beetle (ALB), which is naturally distributed in eastern Asia (China, Korean peninsula), was introduced via wood packing materials (WPM) used in trade to North America (1996) and Europe (2001). We used 7810 single nucleotide polymorphisms (SNPs) derived by a genotype-by-sequencing (GBS) approach to decipher the introduction patterns into Europe. This is applied for the first time on European ALB outbreaks from Germany, Switzerland, and Italy, both from still active and already eradicated infestations. The genome-wide SNPs detected signs of small and highly structured populations within Europe, showing clear founder effects. The very high population differentiation is presumably derived from multiple independent introductions to Europe, which are spatially restricted in mating. By admixture and phylogenetic analyses, some cases of secondary dispersal were observed. Furthermore, some populations suggest admixture, which might have been originated by either multiple introductions from different sources into the new sites or recurrent introductions from an admixed source population. Our results confirmed a complex invasion history of the ALB into Europe and the usability of GBS obtained SNPs in invasion science even without source populations.Publication Composition of the ileum microbiota is a mediator between the host genome and phosphorus utilization and other efficiency traits in Japanese quail (Coturnix japonica)(2022) Haas, Valentin; Vollmar, Solveig; Preuß, Siegfried; Rodehutscord, Markus; Camarinha-Silva, Amélia; Bennewitz, JörnBackground: Phosphorus is an essential nutrient in all living organisms and, currently, it is the focus of much attention due to its global scarcity, the environmental impact of phosphorus from excreta, and its low digestibility due to its storage in the form of phytates in plants. In poultry, phosphorus utilization is influenced by composition of the ileum microbiota and host genetics. In our study, we analyzed the impact of host genetics on composition of the ileum microbiota and the relationship of the relative abundance of ileal bacterial genera with phosphorus utilization and related quantitative traits in Japanese quail. An F2 cross of 758 quails was genotyped with 4k genome-wide single nucleotide polymorphisms (SNPs) and composition of the ileum microbiota was characterized using target amplicon sequencing. Heritabilities of the relative abundance of bacterial genera were estimated and quantitative trait locus (QTL) linkage mapping for the host was conducted for the heritable genera. Phenotypic and genetic correlations and recursive relationships between bacterial genera and quantitative traits were estimated using structural equation models. A genomic best linear unbiased prediction (GBLUP) and microbial (M)BLUP hologenomic selection approach was applied to assess the feasibility of breeding for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota. Results: Among the 59 bacterial genera examined, 24 showed a significant heritability (nominal p ≤ 0.05), ranging from 0.04 to 0.17. For these genera, six genome-wide significant QTL were mapped. Significant recursive effects were found, which support the indirect host genetic effects on the host’s quantitative traits via microbiota composition in the ileum of quail. Cross-validated microbial and genomic prediction accuracies confirmed the strong impact of microbial composition and host genetics on the host’s quantitative traits, as the GBLUP accuracies based on the heritable microbiota-mediated components of the traits were similar to the accuracies of conventional GBLUP based on genome-wide SNPs. Conclusions: Our results revealed a significant effect of host genetics on composition of the ileal microbiota and confirmed that host genetics and composition of the ileum microbiota have an impact on the host’s quantitative traits. This offers the possibility to breed for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota.Publication Connecting resonance theory with social-ecological thinking: Conceptualizing self-world relationships in the context of sustainability transformations(2025) Brossette, Florian; Bieling, ClaudiaRelationships and interactions between humans and their environment play an important role in sustainability transformations. However, their conceptualization remains a big challenge in current social-ecological research. We propose resonance theory by the German sociologist Hartmut Rosa as a fruitful framework to advance social-ecological thinking. Resonance theory investigates the quality of the relationships between self and world and scrutinizes their relevance for transformations. To illustrate the potentials of resonance theory, we use a vignette approach to cases of landscape stewardship initiatives in the Black Forest Biosphere Reserve in Germany. In distinguishing between self and world and highlighting the role of relationships, resonance theory brings ontological and epistemological clarity, while overcoming a strict dichotomy between social and ecological. We find that resonance theory provides a much needed framework to describe how system-wide transformations emerge from interactions and out of relationships at the individual level. We argue that resonance theory contributes to social-ecological systems thinking by adding the notion of uncontrollability in transformations and shifting the debate on agency towards relationships. Synthesis and applications: This paper demonstrates the meaningfulness of relational paradigms for real-world transformations in theory and practice.
