Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "14"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Automatic classification of submerged macrophytes at Lake Constance using laser bathymetry point clouds(2024) Wagner, Nike; Franke, Gunnar; Schmieder, Klaus; Mandlburger, Gottfried; Wagner, Nike; Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria;; Franke, Gunnar; Institute of Landscape and Plant Ecology (320), University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (G.F.); (K.S.); Schmieder, Klaus; Institute of Landscape and Plant Ecology (320), University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (G.F.); (K.S.); Mandlburger, Gottfried; Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria;; Stateczny, AndrzejSubmerged aquatic vegetation, also referred to as submerged macrophytes, provides important habitats and serves as a significant ecological indicator for assessing the condition of water bodies and for gaining insights into the impacts of climate change. In this study, we introduce a novel approach for the classification of submerged vegetation captured with bathymetric LiDAR (Light Detection And Ranging) as a basis for monitoring their state and change, and we validated the results against established monitoring techniques. Employing full-waveform airborne laser scanning, which is routinely used for topographic mapping and forestry applications on dry land, we extended its application to the detection of underwater vegetation in Lake Constance. The primary focus of this research lies in the automatic classification of bathymetric 3D LiDAR point clouds using a decision-based approach, distinguishing the three vegetation classes, (i) Low Vegetation, (ii) High Vegetation, and (iii) Vegetation Canopy, based on their height and other properties like local point density. The results reveal detailed 3D representations of submerged vegetation, enabling the identification of vegetation structures and the inference of vegetation types with reference to pre-existing knowledge. While the results within the training areas demonstrate high precision and alignment with the comparison data, the findings in independent test areas exhibit certain deficiencies that are likely addressable through corrective measures in the future.Publication Spatio-temporal water quality determines algal bloom occurrence and possibly lesser flamingo (Phoeniconaias minor) presence in Momella lakes, Tanzania(2022) Lihepanyama, Deogratias Ladislaus; Ndakidemi, Patrick Alois; Treydte, Anna ChristinaEutrophication and algal blooms have sparked worldwide concern because of their widespread effects on water-dependent species. Harmful algal blooms can cause fatal effects to lesser flamingos (Phoeniconaias minor), obligatory filter feeders and vital bio-indicators in soda lakes. Thus, early detection of algal blooms and potential indicators in water quality is critical, but general tools are lacking in eastern African soda lakes. We monitored algal biomass changes and related water physico–chemical variables for 12 consecutive months in the lakes Big Momella and Rishateni in northern Tanzania. We used chlorophyll-a to measure algal biomass and quantified water physico–chemical variables that might influence algae growth. We also monitored lesser flamingo numbers to understand trends across the year and according to algal bloom occurrence. Algal biomass was strongly related to water nitrogen (r = 0.867; p < 0.001) and phosphorus (r = 0.832; p < 0.001). Monthly patterns showed significant differences in water quality and algal biomass (F = 277, p < 0.001) but not across sampling sites (F = 0.029, p = 0.971). Lesser flamingo numbers seemed to be related to algal biomass at Lake Big Momella (r = 0.828; p < 0.001) and shortly after algal biomass peaked high (i.e., March and April 2021), flamingo numbers declined. Lake Rishateni showed similar patterns. Our findings can provide a basis towards understanding the factors contributing to temporal changes in lesser flamingo abundance due to spatio–temporal water quality variations, which is important for optimising conservation efforts for the species in these unique Momella lakes.