Browsing by Subject "Carrier signature"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Funktionen charakteristischer Sequenzmotive endogener und toxischer mitochondrialer Proteine(2006) Papatheodorou, Panagiotis; Rassow, JoachimIn the course of their biogenesis, mitochondria take up nuclear encoded proteins from the cytosol continuously. Protein import at the mitochondrial outer membrane is mediated by TOM proteins and by TIM proteins at the inner membrane, respectively. Now and then, toxical proteins released by pathogenic bacteria to infected tissue can also reach mitochondria. The present dissertation provides new findings on the role of characteristical sequence motifs that can be identified in endogenous and toxical mitochondrial proteins. In an extensive project the importance of sequence motifs from mitochondrial metabolite carrier proteins in their biogenesis and function was investigated in more detail. It could be shown, that the positively charged presequence of the citrate carrier from Rattus norvegicus is not involved in mitochondrial targeting but rather serves as an internal chaperone. A conserved sequence motif, PX(D/E)XX(R/K), the Carrier Signature, which can be found in all mitochondrial carrier proteins, does also not represent a mitochondrial targeting signal, as could be proven by using the dicarboxylate carrier from Saccharomyces cerevisiae as a model protein. Even the translocation across the outer membrane, the insertion into the inner membrane and the following dimerization of the dicarboxylate carrier are processes occuring independently of the Carrier Signature. Instead, it was discovered, that the Carrier Signature is primarily necessary for the function of metabolite carrier proteins in the inner membrane. In another project it could be shown for the Map toxin from enteropathogenic Escherichia coli strains (EPEC), that it is directed to the mitochondrial matrix, mediated by its typical N-terminal presequence and by the TOM and TIM complexes, respectively. The Map toxin leads then to the fragmentation of the mitochondrial network independent of the mitochondrial fission machinery and to the loss of the mitochondrial membrane potential. Moreover, it could be proven, that an internal conserved sequence motif, WXXXE, is essential for cytotoxicity of the Map toxin in the cytosol and for fission of mitochondria. A lysine residue within the WXXXE sequence serves probably as a locus of sumoylation. The investigations show, that mechanisms of intracellular protein transport are not only important for the biogenesis of mitochondria, but can also be relevant for pathological processes.