Computational Science Hub (CSH)

Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16924

Browse

Recent Submissions

Now showing 1 - 4 of 4
  • Publication
    Network impact analysis on the performance of Secure Group Communication schemes with focus on IoT
    (2024) Prantl, Thomas; Amann, Patrick; Krupitzer, Christian; Engel, Simon; Bauer, André; Kounev, Samuel; Prantl, Thomas; Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Amann, Patrick; Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Krupitzer, Christian; Universität Hohenheim, Stuttgart, Germany; Engel, Simon; Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Bauer, André; Illinois Institute of Technology, Chicago, USA; Kounev, Samuel; Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Secure and scalable group communication environments are essential for many IoT applications as they are the cornerstone for different IoT devices to work together securely to realize smart applications such as smart cities or smart health. Such applications are often implemented in Wireless Sensor Networks, posing additional challenges. Sensors usually have low capacity and limited network connectivity bandwidth. Over time, a variety of Secure Group Communication (SGC) schemes have emerged, all with their advantages and disadvantages. This variety makes it difficult for users to determine the best protocol for their specific application purpose. When selecting a Secure Group Communication scheme, it is crucial to know the model’s performance under varying network conditions. Research focused so far only on performance in terms of server and client runtimes. To the best of our knowledge, we are the first to perform a network-based performance analysis of SGC schemes. Specifically, we analyze the network impact on the two centralized SGC schemes SKDC and LKH and one decentralized/contributory SGC scheme G-DH. To this end, we used the ComBench tool to simulate different network situations and then measured the times required for the following group operations: group creation, adding and removing members. The evaluation of our simulation results indicates that packet loss and delay influence the respective SGC schemes differently and that the execution time of the group operations depends more on the network situations than on the group sizes.
  • Publication
    Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape
    (2021) Krupitzer, Christian; Stein, Anthony
    Background: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.
  • Publication
    CortexVR: Immersive analysis and training of cognitive executive functions of soccer players using virtual reality and machine learning
    (2022) Krupitzer, Christian; Naber, Jens; Stauffert, Jan-Philipp; Mayer, Jan; Spielmann, Jan; Ehmann, Paul; Boci, Noel; Bürkle, Maurice; Ho, André; Komorek, Clemens; Heinickel, Felix; Kounev, Samuel; Becker, Christian; Latoschik, Marc Erich
    Goal: This paper presents an immersive Virtual Reality (VR) system to analyze and train Executive Functions (EFs) of soccer players. EFs are important cognitive functions for athletes. They are a relevant quality that distinguishes amateurs from professionals. Method: The system is based on immersive technology, hence, the user interacts naturally and experiences a training session in a virtual world. The proposed system has a modular design supporting the extension of various so-called game modes. Game modes combine selected game mechanics with specific simulation content to target particular training aspects. The system architecture decouples selection/parameterization and analysis of training sessions via a coaching app from an Unity3D-based VR simulation core. Monitoring of user performance and progress is recorded by a database that sends the necessary feedback to the coaching app for analysis. Results: The system is tested for VR-critical performance criteria to reveal the usefulness of a new interaction paradigm in the cognitive training and analysis of EFs. Subjective ratings for overall usability show that the design as VR application enhances the user experience compared to a traditional desktop app; whereas the new, unfamiliar interaction paradigm does not negatively impact the effort for using the application. Conclusion: The system can provide immersive training of EF in a fully virtual environment, eliminating potential distraction. It further provides an easy-to-use analyzes tool to compare user but also an automatic, adaptive training mode.
  • Publication
    DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics
    (2021) Kienbaum, Lydia; Correa Abondano, Miguel; Blas, Raul; Schmid, Karl
    Background: Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results: Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy (r = 0.99). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions: Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.