Publikationsfonds der Universität Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16624
Über den Publikationsfonds der Universität Hohenheim erhalten Wissenschaftlerinnen und Wissenschaftler der Universität finanzielle Unterstützung bei der Veröffentlichung ihrer Forschungsergebnisse im Open Access. Gefördert werden Zeitschriftenartikel in Fully-Open-Access-Zeitschriften (Gold-OA) und hybriden Subskriptionszeitschriften (Hybrid-OA) sowie Monografien. Autorinnen und Autoren können online einen Förderantrag zur Finanzierungsbeteiligung ihrer Publikation stellen.
- Publikationsfonds: https://kim.uni-hohenheim.de/publikationsfonds
- Förderantrag: https://kim.uni-hohenheim.de/foerderantrag
Browse
Recent Submissions
Publication Effect of liquefaction temperature and enzymatic treatment on bioethanol production from mixed waste baked products(2025) Almuhammad, Mervat; Kölling, Ralf; Einfalt, Daniel; Almuhammad, Mervat; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Kölling, Ralf; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Einfalt, Daniel; Botanical Garden, Ulm University, Hans-Krebs-Weg, 89081, Ulm, GermanyThis study investigates the effect of different liquefaction temperatures (50–70 °C) and four commercial enzyme formulations on glucose release and subsequent ethanol yield, using mixed waste baked products as a substrate. Among the enzymes tested, Amylase GA 500 proved to be superior in the hydrolysis of starch at lower temperatures (50 °C and 55°C). At higher liquefaction temperatures (65 °C and 70°C) all four enzyme preparations showed comparable activity. The highest glucose concentration (205.7 g/L) and the highest ethanol yield (92 g/L) were achieved with Amylase GA 500 at 65 °C. Its superior performance is attributed to the synergistic activity of α-amylase and glucoamylase, which facilitates efficient starch hydrolysis. Crucially, we discovered that the liquefaction temperature profoundly affects fermentation speed independently of the initial glucose concentration or the enzyme preparation used for starch hydrolysis. This novel mechanistic insight suggests that higher temperature treatment either makes an additional factor crucial for yeast fermentation available or depletes/destroys an inhibitor present in the complex waste bakery product matrix. These findings highlight the critical role of temperature and enzyme formulation in optimizing bioethanol production from bakery waste, supporting the development of more sustainable and efficient waste-to-biofuel processes.Publication Towards sustainable biointelligent food design: structuring potential of plant-based materials exemplified using apricot seed oil oleogels and bigels through 3D food printing(2025) Reinmuth, Evelyn; Fahmy, Ahmed Raouf; Ribette, Olivia; Jekle, Mario; Reinmuth, Evelyn; Bioeconomy Office Hohenheim, University of Hohenheim, Stuttgart, Germany; Fahmy, Ahmed Raouf; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Ribette, Olivia; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Jekle, Mario; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, GermanyBackground/Introduction: Biointelligence in the approach of food additive manufacturing represents a significant advancement, enabling the reverse engineering and design of foods. Legislation restricting trans-fats has accelerated research into alternatives, but ingredients like saturated and trans fats play key roles in food quality and functionality. Oleogels are a promising replacement. Food additive manufacturing introduces a biointelligent approach, combining biological and technical components with information technology to optimize food design. This study investigates 3D printing of oleogel and bigel systems using apricot seed oil, aiming to assess their significance, applicability, and printability as sustainable alternatives to trans fats for innovative, resource-efficient food production. Methods: Apricot seed oil, rich in antioxidants and polyunsaturated fatty acids, was processed into plant-based oleogels and bigels. The material systems were incorporated into 3D printed food structures. Material characterization and techno-functional analysis were conducted to evaluate the suitability of apricot seed oil for structuring 3D printed foods and controlling food texture. Results: Adjusting the type and concentration of oil-gelator mixtures enabled tailored texture and lipid distribution to fit consumer preferences. Sustainability impacts were assessed at intermediate processing steps, demonstrating the value of holistic evaluations beyond technical factors. Discussion: Biointelligent 3D printing offers a platform to optimize sensory and sustainability qualities in food design. The integration of apricot seed oil into novel food matrices enables versatile nutritional product development, supporting researchers and industry stakeholders in advancing consumer-centric, sustainable production and consumption practices.Publication Monomorium dine sp. nov. (Hymenoptera, Formicidae): a new inquiline social parasite ant species from North America(2025) Cover, Stefan P.; Rabeling, ChristianAmong the very rarest of Nearctic ants are three species of inquiline social parasites belonging to the genus Monomorium, namely Monomorium inquilinum DuBois, Monomorium pergandei (Emery), and Monomorium talbotae DuBois. All three species are known only from the type collections. Here, we describe Monomorium dine Cover & Rabeling, sp. nov., from the Navajo Nation in New Mexico, USA, a new species closely similar to the three known social parasites. Like them, M. dine appears to be a workerless inquiline that exploits a free-living Monomorium host. We also provide keys to the queens of the Nearctic Monomorium inquilines, provide the first images of these species, report new collections for Monomorium talbotae DuBois, discuss host-parasite associations, and summarize what is presently known about these mysterious social parasites.Publication Spatiotemporal climatic signals in cereal yield variability and trends in Ethiopia(2025) Abera, Kidist; Gayler, Sebastian; Piepho, Hans‑Peter; Streck, Thilo; Abera, Kidist; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany; Gayler, Sebastian; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany; Piepho, Hans‑Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Streck, Thilo; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, GermanyClimatic variability and recurrent drought can strongly affect the variability of crop yield and are therefore frequently considered a risk to food security in Ethiopia. A better understanding of how crop yields vary in space and time, and their relationship to climatic and other driving factors, can assist in enhancing agricultural production and adapting to and mitigating the impacts of climate change. We applied a multiple linear regression model to examine the spatiotemporal climatic signal (air temperature, precipitation, and solar radiation) in the yields of the most important crops (maize, sorghum, tef, and wheat) over the period 1995–2018. An analysis of the climatic data indicated that growing season temperature increased significantly in most regions, but the trends in precipitation were not significant. The yields of maize, sorghum, tef, and wheat tended to increase across most crop-growing areas, particularly in the west, but was highly variable. The results highlight large spatial differences in the contribution of climatic trends to crop-yield variability across Ethiopian regions. The trends in climatic variability did not significantly affect crop yields in some areas, whereas in the main crop-growing areas, up to − 39.2% of yield variability could be attributed to the climatic trends. Specifically, the climatic trends negatively affected maize yields but positively affected sorghum, tef, and wheat yields. Nationally, the average impacts of climatic trends on crop yields was relatively small, ranging from a 3.2% decrease for maize to a 0.7% increase for wheat. In contrast, technological advancements contributed substantially more to yield gains, with annual increases ranging from 4.3% for wheat to 5.1% for sorghum. These findings highlight the dominant role of non-climatic drivers, particularly improved agricultural technology, in shaping crop yield trends. Our findings underscore the spatial heterogeneity of climate impacts on agriculture and highlight the critical importance of technological progress in enhancing crop productivity. They also provide actionable insights for designing crop- and location-specific adaptation strategies, and stress the need for integrated, climate-resilient development pathways in the region.Publication A diamine oxidase from Glutamicibacter halophytocola for the degradation of histamine and tyramine in foods(2025) Kettner, Lucas; Freund, Alexander; Bechtel, Anna; Costa-Catala, Judit; Fischer, Lutz; Kettner, Lucas; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Freund, Alexander; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Bechtel, Anna; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Costa-Catala, Judit; Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; Fischer, Lutz; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, GermanyA novel diamine oxidase (DAO) was discovered in the bacterium Glutamicibacter halophytocola (DAO-GH). The gene of DAO-GH was integrated into the genome of the yeast Komagataella phaffii and recombinantly produced under control of the methanol-inducible AOX1 promoter in a bioreactor cultivation. A high DAO activity of 70.2 ± 5.2 µkat/Lculture (5.25 ± 0.22 µkat/gprotein) was yielded after 90 h of cultivation. The DAO-GH was partially purified by the polyethyleneimine precipitation of nucleic acids, fractionated ammonium sulfate precipitation and hydrophobic interaction chromatography, resulting in a specific DAO activity of 19.7 µkat/gProtein. The DAO-GH was then biochemically investigated regarding its potential for histamine and tyramine degradation in fermented foods and the human small intestine. Interestingly, the DAO-GH showed activity even at a low pH of 5 and low temperature of 6 °C. Both histamine and tyramine were effectively degraded and DAO-GH showed especially very high affinity towards tyramine (Km of 0.009 mM). The DAO-GH was shown to be capable of degrading around 20% of the initially applied histamine in tuna paste (pH 5.6) at 5 °C within 24 h and completely degraded the histamine in a simulated intestinal fluid within 1.5 h in bioconversion experiments. The DAO-GH was spray-dried for the production of a storable enzyme preparation. Only around 17% of activity were lost in this process and the DAO-GH remained stable at room temperature for at least 3 months. The discovery of this DAO with its very advantageous biochemical properties allows the preparation of histamine-reduced or -free fermented foods by a simple enzymatic treatment or the treatment of histamine intolerance symptoms as a dietary supplement or medicine.Publication Mapping genes for resilient dairy cows by means of across-breed genome-wide association analysis(2025) Keßler, Franziska; Zölch, Maximilian; Wellman, Robin; Bennewitz, Jörn; Keßler, Franziska; Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany; Zölch, Maximilian; Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany; Wellman, Robin; Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany; Bennewitz, Jörn; Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, GermanyBackground: Indicator traits based on variance and autocorrelation of longitudinal data are increasingly used to measure resilience in animal breeding. While these traits show promising heritability and can be routinely collected, their genetic architecture remains poorly understood. We conducted GWAS for three resilience indicators across German Holstein ( n = 2,300), Fleckvieh ( n = 2,330), and Brown Swiss ( n = 1,073) dairy cattle ( Bos Taurus ) populations. The indicators included variance ( ) and autocorrelation ( ) of deviations of observed from predicted daily milk yield and variance of relative daily milk yield ( ). Additionally, we analysed a selection index combining these traits. Prior to GWAS, we examined population structure through multi-dimensional scaling (MDS) and LD patterns, revealing distinct genetic clusters for each breed and similar LD decay patterns. Results: The GWAS results confirmed the polygenic nature of resilience, with multiple genomic regions showing significant associations. Notable signals were detected on BTA5 ( ), BTA14 ( ), BTA2 and BTA8 ( ) for single indicator traits. For selection index resilience, strong suggestive SNPs are located on BTA4 , BTA16 , BTA21 , and BTA27 . Detected regions overlapped with previously reported QTLs for performance, reproduction, longevity and health, providing new insights into the biological pathways underlying dairy cattle resilience. Conclusions: Our findings demonstrate that resilience indicators have a complex genetic architecture with both breed-specific and shared components, supporting their potential use in selective breeding programs while highlighting the importance of careful trait definition.Publication Pathways for biodiversity enhancement in German agricultural landscapes(2025) Sponagel, Christian; Thompson, Amibeth; Paetow, Hubertus; Mupepele, Anne‐Christine; Bieling, Claudia; Sommer, Martin; Klein, Alexandra‐Maria; Settele, Josef; Finger, Robert; Huber, Robert; Albert, Christian; Filser, Juliane; Jansen, Florian; Kleemann, Janina; Schreiner, Vera; Lakner, Sebastian; Sponagel, Christian; Department of Farm Management, University of Hohenheim, Stuttgart, Germany; Thompson, Amibeth; Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany; Paetow, Hubertus; DLG e.V.—German Agricultural Society, Frankfurt am Main, Germany; Mupepele, Anne‐Christine; Department of Biology—Animal Ecology, University of Marburg, Marburg, Germany; Bieling, Claudia; Department of Societal Transition and Agriculture, University of Hohenheim, Stuttgart, Germany; Sommer, Martin; Deutscher Verband für Landschaftspflege (DVL)—Landcare Germany, Ansbach, Germany; Klein, Alexandra‐Maria; Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany; Settele, Josef; German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany; Finger, Robert; Agricultural Economics and Policy, ETH Zürich, Zürich, Switzerland; Huber, Robert; Agricultural Economics and Policy, ETH Zürich, Zürich, Switzerland; Albert, Christian; Institute of Environmental Planning, Leibniz University Hannover, Hannover, Germany; Filser, Juliane; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany; Jansen, Florian; Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany; Kleemann, Janina; German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany; Schreiner, Vera; Department of Sustainable Landscape Development, Institute for Geosciences and Geography, Martin‐Luther University Halle‐Wittenberg, Halle, Germany; Lakner, Sebastian; Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, GermanyConserving biodiversity, especially in agricultural landscapes, is a major societal challenge. Broad scientific evidence exists on the impacts of single drivers on biodiversity, such as the intensification of agriculture. However, halting biodiversity decline requires a systemic understanding of the interactions between multiple drivers, which has hardly been achieved so far. Selecting Germany as a case study, the goal of our analysis is (i) to understand how various socio‐economic drivers of biodiversity in agricultural landscapes interact at the national scale, (ii) to identify plausible pathways that most likely will lead to an improvement of biodiversity in agricultural landscapes and (iii) to discuss guiding principles for policy‐making based on the pathways. We applied the expert‐based Cross‐Impact‐Balance (CIB) methodology to the German agri‐food system (target year 2030). Seven descriptors that represent the most relevant socio‐economic drivers of biodiversity (here, we focus on species richness) in agricultural landscapes in Germany were defined. In three workshops with different groups of experts, we assessed all the interactions and impacts between these descriptors. From the workshops, seven overlapping scenarios were identified and aggregated into four main future pathways for enhancing biodiversity in agricultural landscapes. These pathways are: (1) ‘Innovation and stricter legislation’, (2) ‘Major change in protein production and CAP shift’, (3) ‘Major change in protein production and national legislation’ and (4) ‘Major social changes compensate for a lack of innovation in food production’. Socio‐economic drivers interact to varying degrees. Societal values have a strong active influence on the system, e. g. agricultural policy, whereas the orientation and objectives of agriculture, e. g. focus on public goods, are rather passively determined. Conserving biodiversity thus depends upon the evolution of societal values, European and national nature conservation and agricultural policies, innovations in plant and protein production as well as on global commodity markets. A key message for policymakers is that there are generally different, complementary options for achieving the objective of improving biodiversity. This is important when specific drivers such as the CAP cannot be steered in a particular desired direction.Publication Comparative ungulate diversity and biomass change with human use and drought: implications for community stability and protected area prioritization in African savannas(2025) Bartzke, Gundula S.; Ogutu, Joseph O.; Piepho, Hans‐Peter; Bedelian, Claire; Rainy, Michael E.; Kruska, Russel L.; Worden, Jeffrey S.; Kimani, Kamau; McCartney, Michael J.; Ng'ang'a, Leah; Kinoti, Jeniffer; Njuguna, Evanson C.; Wilson, Cathleen J.; Lamprey, Richard; Hobbs, Nicholas Thompson; Reid, Robin S.; Bartzke, Gundula S.; Biostatistics Unit, Faculty of Agricultural Sciences, Institute of Crop Science, University of Hohenheim, Stuttgart, Baden‐Württemberg, Germany; Ogutu, Joseph O.; Biostatistics Unit, Faculty of Agricultural Sciences, Institute of Crop Science, University of Hohenheim, Stuttgart, Baden‐Württemberg, Germany; Piepho, Hans‐Peter; Biostatistics Unit, Faculty of Agricultural Sciences, Institute of Crop Science, University of Hohenheim, Stuttgart, Baden‐Württemberg, Germany; Bedelian, Claire; Danish Institute for International Studies, Copenhagen, Capital Region of Denmark, Denmark; Rainy, Michael E.; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; Kruska, Russel L.; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; Worden, Jeffrey S.; World Wildlife Fund, Nairobi, Nairobi County, Kenya; Kimani, Kamau; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; McCartney, Michael J.; Campfire Conservation, Nairobi, Nairobi County, Kenya; Ng'ang'a, Leah; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; Kinoti, Jeniffer; Department of Infrastructure, Lands and Urban Development, County Government of Laikipia, Rumuruti, Laikipia, Kenya; Njuguna, Evanson C.; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; Wilson, Cathleen J.; International Livestock Research Institute, Nairobi, Nairobi County, Kenya; Lamprey, Richard; Department of Natural Resources, Faculty of Geo‐Information Science and Earth Observation, University of Twente, Enschede, Overste, the Netherlands; Hobbs, Nicholas Thompson; Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA; Reid, Robin S.; International Livestock Research Institute, Nairobi, Nairobi County, KenyaDrought and human use may alter ungulate diversity and biomass in contrasting ways. In African savannas, resource‐dependent grazers such as wildebeest (Connochaetes taurinus) and zebra (Equus quagga) may decline or disperse as resources decline, opening space for more drought‐tolerant species such as gazelles (Eudorcas and Nanger) and impala (Aepyceros melampus). This shift can increase species richness, evenness, and overall ungulate diversity. Although higher diversity may stabilize ungulate communities, it may be associated with lower biomass (the total body mass of all individuals in a community), which in turn affects vegetation structure and composition, nutrient cycling, energy flows, and other organisms in savannas. While ungulate biomass often declines during drought or in areas of intense human use, the effects on diversity changes under low‐to‐moderate human use remain less clear. Our fine‐scale censuses in the Maasai Mara National Reserve and adjacent pastoral lands in Kenya showed that ungulate biomass declined more than diversity in the 1999 drought year. In the normal rainfall year of 2002, diversity peaked along the reserve boundary, but species richness leveled off in the drought year. Biomass peaked in the reserve in both census years, and migratory ungulates moved further into the reserve in the drought year, where diversity declined. These findings suggest that core protected areas are crucial for maintaining ungulate biomass, while transition zones from protected and pastoral lands support higher diversity unless drought reduces species richness.Publication Should we delay leaf water potential measurements after excision? Dehydration or equilibration?(2024) Perera‐Castro, Alicia V.; Puértolas, Jaime; Fernández-Marín, Beatriz; González-Rodríguez, Águeda M.; Perera-Castro, Alicia V.; Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), 38200, La Laguna, Canary Islands, Spain; Puértolas, Jaime; Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), 38200, La Laguna, Canary Islands, Spain; Fernández-Marín, Beatriz; Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), 38200, La Laguna, Canary Islands, Spain; González-Rodríguez, Águeda M.; Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), 38200, La Laguna, Canary Islands, SpainBackground: Accurate leaf water potential (Ψw) determination is crucial in studying plant responses to water deficit. After excision, water potential decreases, even under low evaporative demand conditions, which has been recently attributed to the equilibration of pre-excision Ψw gradients across the leaf. We assessed the influence of potential re-equilibration on water potential determination by monitoring leaf Ψw and relative water content decline after excision using different storage methods. Results: Even though leaf Ψw declined during storage under low evaporative demand conditions, this was strongly reduced when covering the leaf with a hydrophobic layer (vaseline) and explained by changes in relative water content. However, residual water loss was variable between species, possibly related to morpho-physiological leaf traits. Provided water loss was minimized during storage, pre-excision leaf transpiration rate did not affect to the magnitude of leaf Ψw decline after excision, confirming that transpiration-driven Ψw gradients have no effect on leaf Ψw determination. Conclusions: Disequilibrium in water potentials across a transpiring leaf upon excision is dissipated very quickly, well within the elapsed time between excision and pressurization, therefore, not resulting in overestimation of leaf Ψw measured immediately after excision. When leaf storage is required, the effectiveness of a storage under low evaporative demand varied among species. Covering with a hydrophobic layer is an acceptable alternative.Publication The tale of two Ions Na⁺ and Cl⁻: unraveling onion plant responses to varying salt treatments(2024) Romo-Pérez, Maria Luisa; Weinert, C. H.; Egert, B.; Kulling, S. E.; Zörb, Christian; Romo-Pérez, M. L.; University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Schloss Westflügel, 70599, Stuttgart, Germany; Weinert, C. H.; Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany; Egert, B.; Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany; Kulling, S. E.; Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany; Zörb, C.; University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Schloss Westflügel, 70599, Stuttgart, GermanyBackground: Exploring the adaptive responses of onions ( Allium cepa L.) to salinity reveals a critical challenge for this salt-sensitive crop. While previous studies have concentrated on the effects of sodium (Na⁺), this research highlights the substantial yet less-explored impact of chloride (Cl⁻) accumulation. Two onion varieties were subjected to treatments with different sodium and chloride containing salts to observe early metabolic responses without causing toxicity. Results: The initial effects of salinity on onions showed increased concentrations of both ions, with Cl⁻ having a more pronounced impact on metabolic profiles than Na⁺. Onions initially adapt to salinity by first altering their organic acid concentrations, which are critical for essential functions such as energy production and stress response. The landrace Birnförmige exhibited more effective regulation of its Na⁺/K⁺ balance and a milder response to Cl⁻ compared to the hybrid Hytech. Metabolic alterations were analyzed using advanced techniques, revealing specific responses in leaves and bulbs to Cl⁻ accumulation, with significant changes observed in organic acids involved in the TCA cycle, such as fumaric acid, and succinic acid, in both varieties. Additionally, there was a variety-specific increase in ethanolamine in Birnförmige and lysine in Hytech in response to Cl⁻ accumulation. Conclusion: This comprehensive study offers new insights into onion ion regulation and stress adaptation during the initial stages of salinity exposure, emphasizing the importance of considering both Na⁺ and Cl⁻ when assessing plant responses to salinity.Publication Recombinant production of Paenibacillus wynnii β-galactosidase with Komagataella phaffii(2024) Bechtel, Anna; Seitl, Ines; Pross, Eva; Hetzel, Frank; Keutgen, Mario; Fischer, Lutz; Bechtel, Anna; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Seitl, Ines; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Pross, Eva; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Hetzel, Frank; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Keutgen, Mario; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Fischer, Lutz; Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, GermanyThe β-galactosidase from Paenibacillus wynnii (β-gal-Pw) is a promising candidate for lactose hydrolysis in milk and dairy products, as it has a higher affinity for the substrate lactose (low KM value) compared to industrially used β-galactosidases and is not inhibited by the hydrolysis-generated product D-galactose. However, β-gal-Pw must firstly be produced cost-effectively for any potential industrial application. Accordingly, the yeast Komagataella phaffii was chosen to investigate its feasibility to recombinantly produce β-gal-Pw since it is approved for the regulated production of food enzymes. The aim of this study was to find the most suitable way to produce the β-gal-Pw in K. phaffii either extracellularly or intracellularly.ResultsFirstly, 11 different signal peptides were tested for extracellular production of β-gal-Pw by K. phaffii under the control of the constitutive GAP promoter. None of the signal peptides resulted in a secretion of β-gal-Pw, indicating problems within the secretory pathway of this enzyme. Therefore, intracellular β-gal-Pw production was investigated using the GAP or methanol-inducible AOX1 promoter. A four-fold higher volumetric β-galactosidase activity of 7537 ± 66 µkatoNPGal/Lculture was achieved by the K. phaffii clone 27 using the AOX1 promoter in fed-batch bioreactor cultivations, compared to the clone 5 using the GAP promoter. However, a two-fold higher specific productivity of 3.14 ± 0.05 µkatoNPGal/gDCW/h was achieved when using the GAP promoter for β-gal-Pw production compared to the AOX1 promoter. After partial purification, a β-gal-Pw enzyme preparation with a total β-galactosidase activity of 3082 ± 98 µkatoNPGal was obtained from 1 L of recombinant K. phaffii culture (using AOX1 promoter).ConclusionThis study showed that the β-gal-Pw was produced intracellularly by K. phaffii, but the secretion was not achieved with the signal peptides chosen. Nevertheless, a straightforward approach to improve the intracellular β-gal-Pw production with K. phaffii by using either the GAP or AOX1 promoter in bioreactor cultivations was demonstrated, offering insights into alternative production methods for this enzyme.Publication EvaMol : A python tool for evaluating molecules in hit-to-lead optimization(2025) Herzog, Anna-Maria; Steuber, Julia; Fritz, GünterThis Python script was developed as a tool in structure-based drug discovery processes, such as fragment-to-lead-optimization, where a large number of variants of an initially identified hit molecule have to be evaluated and ranked in silico. The tool facilitates the identification and selection of follow-up drug candidates with improved predicted pharmacokinetic and binding properties. These candidates can derive from different procedures like similarity search or systematic chemical modifications. The initial hit data are provided either as coordinates of the protein-molecule complex obtained experimentally or by in silico methods such as docking making the script a versatile tool adaptable to variable workflows.Publication Tick hazard in a Central European country: Mapping Europe’s principal tick-borne disease vector across Germany(2025) Springer, Andrea; Lindau, Alexander; Fachet-Lehmann, Katrin; Kämmer, Daniel; Bulling, Ingrid; Knoll, Steffen; Król, Nina; Fischer, Dominik; Fischer, Luisa; Drehmann, Marco; Chitimia-Dobler, Lidia; Noll, Madeleine; Vineer, Hannah Rose; Kahl, Olaf; Pfeffer, Martin; Strube, Christina; Mackenstedt, UteThe most common European tick species, Ixodes ricinus, is the principal vector of Borrelia and tick-borne encephalitis virus and several other pathogens of public health relevance in Europe. Comprehensive data on tick abundance and the underlying ecological drivers are crucial for developing awareness and control strategies and to assess future changes in tick-borne disease risk. We aimed to provide a Germany-wide map of I. ricinus abundance to aid in disease transmission risk assessment. During 2018−2020, questing tick density was assessed at 83 sites across the whole country by drag flagging, whereby 49,344 I. ricinus nymphs and adults were collected. Relationships between climate, land cover, and monthly questing I. ricinus nymph density were explored and used to draw an abundance map. Highest tick hazard was observed in areas near the coast with mild winters and moist springs, and in mid-elevation mountain ranges, which represent popular tourist destinations. The ticks’ seasonal activity pattern was predominantly unimodal. The fact that the observed regional differences are contradictory to a previous estimation based on a combination of regional studies illustrates the need for an extensive and coordinated sampling effort to reliably estimate tick abundance at larger spatial scales. Combined with data on tick-borne pathogens, our study enables estimating the density of infected ticks and consequently the risk of acquiring an infectious tick bite. Moreover, the observed relationships with climate and land cover can help to predict future developments of tick hazard under different climate scenarios in Central Europe.Publication The affective, cognitive, and behavioral echo of cumulative series reception aka binge-watching: A qualitative study(2025) Eberhard-Bölz, SarahWhen analyzing the cumulative reception of TV series, often called binge-watching (i.e., watching several episodes of one TV series back-to-back), there has been a strong focus on potentially harmful consequences in the literature, such as insomnia, anxiety, depression symptoms, and particularly addiction. However, only a few extant studies have considered potential nonharmful or even beneficial consequences from binge-watching. The present study addresses this gap in the binge-watching literature and calls for future studies that address the gap between the two contrasting perspectives on binge-watching, i.e., whether it is a harmful or beneficial behavior. In the present study, 24 semi-structured, diary-based interviews were conducted with young adults, yielding a wide spectrum of thoughts, affects, and behaviors that outlasted the exposure situation. The qualitative content analysis revealed long-term effects, such as transferred positive and negative moods, delayed sleep, feelings of inspiration or motivation, and urges to research or communicate about the TV series. A key finding was that binge-watching also triggered affective states such as heightened arousal or grieving, which could last up to several hours or days. The described media effects' potential persistence demonstrates the importance of considering the time aspect in future research because the longer the effects last, the longer they potentially impact one's everyday live.Publication Digital educational escape rooms as a novel approach to cybersecurity education: An empirical study on learner perceptions of usefulness and usability(2025) Keller, Thomas; Guggemos, Josef; Warwas, JuliaWith the increasing number and severity of cybersecurity incidents, programs for security education, training, and awareness (SETA) have become essential components of organizational and educational strategies to promote information-secure behavior at the workplace. While traditional training is often perceived as uninspiring and tedious, digital educational escape rooms (DEERs) are a promising tool that combines immersive, game-based learning with authentic problem scenarios to improve cybersecurity skills. Despite their growing popularity in cybersecurity education, key acceptance factors of DEERs have not been systematically investigated. This study applies the technology acceptance model (TAM) to examine how perceived usefulness and perceived ease of use affect the intentions of target learner groups to engage with DEERs in SETA programs. A total of 217 participants, comprising trainees, students, and employees, played one randomly selected DEER from a set of three on password management, privacy and data security, and social engineering. After completion, participants evaluated the learning environment using a standardized TAM-based questionnaire. Structural equation modeling revealed that perceived usefulness was the strongest predictor of learners’ intentions to engage with DEERs. Perceived ease of use influenced engagement intention directly and indirectly by positively affecting perceived usefulness. Multigroup analysis revealed no significant differences across age, gender, professional background, or DEER scenario. These findings highlight the importance of balancing ease of use with the extent to which learners perceive the content to be meaningful, important, and relevant to their professional context in order to ensure acceptance and effective integration of DEERs into SETA programs.Publication AI-assisted tractor control for secondary tillage(2025) Boysen, Jonas; Bökle, Sebastian; Stein, AnthonyModern agricultural machinery requires skilled operators to optimally configure their complex machines, while autonomous machines without operators must already optimize their configuration themselves to achieve optimal performance. During secondary tillage multiple performance measures need to be monitored and maximized: Seedbed quality, area output and fuel consumption. The seedbed quality can be measured with the soil surface roughness coefficient which can be computed with 3D-cameras attached to the machine. For our work, such cameras are mounted in the front and back of a Claas Arion 660 tractor with an attached power harrow seeding combination. The soil-machine response model of our prior work is utilized to model the soil-machine interaction for the training of a reinforcement learning agent and the application of a decision-time planning agent to assist in controlling the working speed of the machine. The control agents are tested in real-world field trials and compared to good professional practice. The decision-time planning agent achieves comparable results to a gold-standard while reaching significantly higher performance in terms of area output (29.1%) and more efficient fuel consumption (8.4%) than a baseline while the reinforcement learning agent performed worse during the field trials. The seedbed quality and field emergence are not showing significant differences between the variants. Further analysis shows that model training and selection for the reinforcement agent could have led to performance loss and models that are performing better in simulation have been trained after the field trials. Furthermore, we analyze the models when tested under the field conditions in the field trials (out-of-distribution) that are different from the field conditions during training data collection. The out-of-distribution testing leads to a reduced performance in terms of rRMSE of the decision-time planning agent and to some extend reward of the reinforcement learning agent compared to in-distribution testing.Publication Decoding the aroma of Jägermeister liqueur through sensory-directed flavor analysis combined with solvent-assisted flavor evaporation and headspace-stir bar sorptive extraction(2025) Zhu, Lin; Lin, Zexin; Zheng, Yan; Liang, Jiaqi; Li, Yupan; Kramp, Sarah; Zhang, Youfeng; Xiang, Can; Chen, Leyin; Rigling, Marina; Hannemann, Lea; Oellig, Claudia; Zhang, YanyanJägermeister liqueur is one of the most famous herbal liqueurs worldwide, distinguished by its unique anise-like, bitter, and caramel-like flavor. This study comprehensively analyzed its aroma components using sensory-directed flavor analysis combined with gas chromatography-mass spectrometry and gas chromatography-sulfur chemiluminescence detector. Results identified eugenol (clove-like, OAV = 1260), anethole (anise-like, OAV = 723), p-anisaldehyde (almond-like, OAV = 97), linalool (flowery, OAV = 25), and terpinen-4-ol (apple-like, OAV = 119) as key aroma-active compounds in Jägermeister. Two sulfur-containing compounds with meaty and caramel-like aromas were detected; however, their OAVs were below 1. Ethers (53.2 mg/L), phenolics (27.8 mg/L), and terpenoids (10.5 mg/L) were the most abundant compounds in Jägermeister, while esters were present at relatively low concentrations (254 μg/L). A comparative analysis revealed that Jägermeister exhibits a unique aroma profile among ten European herbal liqueurs, particularly enriched in caramel-like and licorice-like notes, which showed positive correlations with key aroma compounds such as vanillin. This work not only provides the first systematic aroma deconstruction of Jägermeister, but also offers new insights into the compositional patterns and classification of European herbal liqueurs, contributing to quality control, product authentication, and flavor optimization.Publication “Smart support for fruit farm business decision-making: A framework for digital controlling adoption”(2025) Müller, Luis; Luer, Robert; Lentz, WolfgangDecision-makers in horticultural enterprises face significant challenges, including structural changes toward fewer and larger enterprises, increasing weather extremes, skilled labor shortages, and increasing sustainability demands. Addressing these challenges requires the use of effective business management instruments. However, initial research suggests that controlling is practiced infrequently and with limited intensity in the sector. This study investigates barriers to and drivers of the adoption of controlling, focusing on the role of digital transformation in enhancing its use. Nineteen semi-structured interviews and farm inspections were conducted with 28 current and prospective farm managers in the fruit-growing sector in Germany and Luxembourg. Results show that decision-making is primarily driven by experience and intuition. Lack of experience with controlling hinders the visibility of its benefits, thus preventing the acquisition of controlling expertise. In the absence of such expertise, controlling methods cannot be effectively implemented, rendering the benefits elusive. Additionally, the limited availability of processed data restricts meaningful business analyses. Farm management and information systems (FMISs) provide minimal controlling functionalities. Reporting obligations relating to crop protection are the primary drivers for FMIS adoption. Therefore, reporting obligations in external accounting and data requirements for funding and loan procurement serve as entry points for controlling-focused software solutions. Information and controlling systems thus hold potential to enhance routine decision-making, rendering the benefits of controlling more tangible. This study contributes a conceptual framework to broaden the understanding of the often negatively perceived cost-benefit ratio of controlling in small and medium-sized enterprises and identifies strategies to strengthen its practical relevance.Publication Energy security through decentralized energy system: Electricity self-sufficient village using agrivoltaics?(2025) Bauknecht, MartinWith the Green Deal, the energy transition in the EU has gained momentum. Almost half of electricity consumption is now covered by renewable energies, with solar technology accounting for a significant share. However, the massive expansion of photovoltaics is increasingly being felt by every individual locally. The electrical grids are reaching their capacity limits. The number of redispatch measures is rising exponentially to keep the system running smoothly. This, in turn, is reflected on the electricity exchange in exorbitantly low exchange prices and, during windy and sunny hours, even in negative exchange prices. These trends raise the question of how energy security can be maintained and achieved in the future. In this context, a decentralized energy system is being modeled to create an electricity self-sufficient village using agrivoltaics. This has the advantage that the land can be used for dual purposes. The shared use of energy between citizens, commercials, municipalities and farmers creates a self-managed energy community. Farmers play a key role in this dual land use. This paper examines the central research question of what contribution an electricity self-sufficient village using agrivoltaics can make to energy security. This paper is based on a survey of 215 German farmers. The survey results show a trend that energy security can be increased through this modelled decentralized energy system. Various policy implications can be formulated for the realization of an electricity self-sufficient village using agrivoltaics. The first step is to achieve electricity self-sufficiency during the sunny months from March to October, until cross-seasonal storage media are available and ready for series production.Publication Reactivation of the tRNASer/tRNATyr gene cluster in Arabidopsis thaliana root tips(2025) Hummel, Guillaume; Kumari, Priyanka; Hua, Chenlei; Wang, Long; Mai, Yan-Xia; Wang, Nan; Shala, Negjmedin; Kaya, Emir Can; Molinier, Jean; Wang, Jia-Wei; Liu, ChangPlants maintain redundant tRNA genes (tDNAs) in their nuclear genomes, but the significance, regulation, and functional roles of these genes remain poorly understood. A cluster of tandemly repeated tDNAs decoding serine and tyrosine (SYY cluster) is located on Arabidopsis (Arabidopsis thaliana) chromosome 1, intersecting constitutive heterochromatin and remaining transcriptionally silenced in most tissues. The natural conditions inducing their transcription remain unknown. Here, we elucidate the tissue-specific expression pattern of this cluster during seedling establishment. Our findings reveal that SYY cluster tRNAs are primarily produced in the root cap columella and adjacent root cap cells. Transcriptional reactivation of the SYY cluster occurs in these tissues despite high DNA methylation levels. Furthermore, we demonstrate that these cells accumulate high levels of a transgenic glycoprotein rich in serine, tyrosine, and proline, and that CRISPR/Cas9 deletion of the SYY cluster alters the accumulation and stability of the glycoprotein in these specific cells. Our work provides pioneering evidence of a developmental and cell-specific expression program for a plant tDNA. We offer insights into the putative role of specialized tDNAs in enhancing glycoprotein biosynthesis in protective tissues of the meristem.
