EvaMol : A python tool for evaluating molecules in hit-to-lead optimization

dc.contributor.authorHerzog, Anna-Maria
dc.contributor.authorSteuber, Julia
dc.contributor.authorFritz, Günter
dc.date.accessioned2025-10-23T06:33:49Z
dc.date.available2025-10-23T06:33:49Z
dc.date.issued2025
dc.description.abstractThis Python script was developed as a tool in structure-based drug discovery processes, such as fragment-to-lead-optimization, where a large number of variants of an initially identified hit molecule have to be evaluated and ranked in silico. The tool facilitates the identification and selection of follow-up drug candidates with improved predicted pharmacokinetic and binding properties. These candidates can derive from different procedures like similarity search or systematic chemical modifications. The initial hit data are provided either as coordinates of the protein-molecule complex obtained experimentally or by in silico methods such as docking making the script a versatile tool adaptable to variable workflows.en
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/18198
dc.identifier.urihttps://doi.org/10.1016/j.softx.2025.102366
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectComputer-aided drug design
dc.subjectMolecular docking
dc.subjectBinding affinity prediction
dc.subjectLigand efficiency prediction
dc.subject.ddc610
dc.titleEvaMol : A python tool for evaluating molecules in hit-to-lead optimizationen
dc.type.diniArticle
dcterms.bibliographicCitationSoftwareX, 31 (2025), 102366. https://doi.org/10.1016/j.softx.2025.102366. ISSN: 2352-7110 Amsterdam : Elsevier
dcterms.bibliographicCitation.articlenumber102366
dcterms.bibliographicCitation.issn2352-7110
dcterms.bibliographicCitation.journaltitleSoftwareX
dcterms.bibliographicCitation.originalpublishernameElsevier
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam
dcterms.bibliographicCitation.volume31
local.export.bibtex@article{Herzog2025, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/18198}, doi = {10.1016/j.softx.2025.102366}, author = {Herzog, Anna-Maria and Steuber, Julia and Fritz, Günter et al.}, title = {EvaMol : A python tool for evaluating molecules in hit-to-lead optimization}, journal = {SoftwareX}, year = {2025}, volume = {31}, }
local.subject.sdg3
local.subject.sdg9
local.title.fullEvaMol : A python tool for evaluating molecules in hit-to-lead optimization

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1-s2.0-S2352711025003322-main.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1-s2.0-S2352711025003322-mmc1.docx
Size:
436.21 KB
Format:
Microsoft Word XML

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: