Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "3"
Now showing 1 - 20 of 31
- Results Per Page
- Sort Options
Publication An evaluation of the lineage of Brucella isolates in turkey by a whole-genome single-nucleotide polymorphism analysis(2024) Akar, Kadir; Holzer, Katharina; Hoelzle, Ludwig E.; Yıldız Öz, Gülseren; Abdelmegid, Shaimaa; Baklan, Emin Ayhan; Eroğlu, Buket; Atıl, Eray; Moustafa, Shawky A.; Wareth, Gamal; Elkhayat, Manar; Pedersen, KarlBrucellosis is a disease caused by the Brucella ( B. ) species. It is a zoonotic disease that affects farm animals and causes economic losses in many countries worldwide. Brucella has the ability to persist in the environment and infect the host at low doses. Thus, it is more important to trace brucellosis outbreaks, identify their sources of infection, and interrupt their transmission. Some countries already have initial data, but most of these data are based on a Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA), which is completely unsuitable for studying the Brucella genome. Since brucellosis is an endemic disease in Turkey, this study aimed to examine the genome of Turkish Brucella isolates collected between 2018 and 2020, except for one isolate, which was from 2012. A total of 28 strains of B. melitensis ( n = 15) and B. abortus ( n = 13) were analyzed using a core-genome single-nucleotide polymorphism (cgSNP) analysis. A potential connection between the Turkish isolates and entries from Sweden, Israel, Syria, Austria, and India for B. melitensis was detected. For B. abortus , there may be potential associations with entries from China. This explains the tight ties found between Brucella strains from neighboring countries and isolates from Turkey. Therefore, it is recommended that strict measures be taken and the possible effects of uncontrolled animal introduction are emphasized.Publication Assessing functional properties of diet protein hydrolysate and oil from fish waste on canine immune parameters, cardiac biomarkers, and fecal microbiota(2024) Cabrita, Ana R. J.; Barroso, Carolina; Fontes-Sousa, Ana Patrícia; Correia, Alexandra; Teixeira, Luzia; Maia, Margarida R. G.; Vilanova, Manuel; Yergaliyev, Timur; Camarinha-Silva, Amélia; Fonseca, António J. M.Locally produced fish hydrolysate and oil from the agrifood sector comprises a sustainable solution both to the problem of fish waste disposal and to the petfood sector with potential benefits for the animal’s health. This study evaluated the effects of the dietary replacement of mainly imported shrimp hydrolysate (5%) and salmon oil (3%; control diet) with locally produced fish hydrolysate (5%) and oil (3.2%) obtained from fish waste (experimental diet) on systemic inflammation markers, adipokines levels, cardiac function and fecal microbiota of adult dogs. Samples and measurements were taken from a feeding trial conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet and two periods of 6 weeks each. The experimental diet, with higher docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids contents, decreased plasmatic triglycerides and the activity of angiotensin converting enzyme, also tending to decrease total cholesterol. No effects of diet were observed on serum levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-8, and IL-12/IL-23 p40, and of the serum levels of the anti-inflammatory adipokine adiponectin. Blood pressure, heart rate and echocardiographic measurements were similar between diets with the only exception of left atrial to aorta diameter ratio that was higher in dogs fed the experimental diet, but without clinical relevance. Diet did not significantly affect fecal immunoglobulin A concentration. Regarding fecal microbiome, Megasphaera was the most abundant genus, followed by Bifidobacterium , Fusobacterium , and Prevotella , being the relative abundances of Fusobacterium and Ileibacterium genera positively affected by the experimental diet. Overall, results from the performed short term trial suggest that shrimp hydrolysate and salmon oil can be replaced by protein hydrolysate and oil from fish by-products without affecting systemic inflammatory markers, cardiac structure and function, but potentially benefiting bacterial genera associated with healthy microbiome. Considering the high DHA and EPA contents and the antioxidant properties of fish oil and hydrolysate, it would be worthwhile in the future to assess their long-term effects on inflammatory markers and their role in spontaneous canine cardiac diseases and to perform metabolomic and metagenomics analysis to elucidate the relevance of microbiota changes in the gut.Publication Assessing the socioeconomic and heterogeneous impacts of noise pollution on food markets in Akure metropolis, Nigeria(2025) Olutumise, Adewale Isaac; Oparinde, Lawrence Olusola; Oloruntoba, Modupe Mary; Oluwafemi, Soliu Abdulqoyum; Oluwasanmi, Feyisayo Aderogba; Akinrotimi, Abiodun Festus; Oladoyin, Olanrewaju Peter; Ajibefun, Igbekele AmosAs urbanization intensifies across sub-Saharan Africa, noise pollution has emerged as a critical yet underexplored environmental and economic stressor for informal market economies. While prior studies have largely focused on the health impacts of noise, limited empirical research exists on its direct effect on market vendors’ economic performance, particularly in rapidly urbanizing African cities. This study addresses this gap by examining the socioeconomic and heterogeneous impacts of noise pollution on food markets in Akure Metropolis, Nigeria. Using primary data collected from 120 food vendors across four major markets, noise levels were measured with a sonometer, while a well-structured questionnaire captured the marketers’ socioeconomic characteristics and perceptions. Unconditional Quantile Regression (UQR) was employed to analyze the heterogeneous impacts of noise pollution on vendors’ income levels. The results show that noise pollution significantly reduces income at the 50th and 75th quantiles, while noise perception has a significant negative effect at lower income levels. The socioeconomic factors, such as sex, education, shop size, and market experience, were also found to significantly influence income levels. The study highlights the need for market zoning regulations, noise control policies, and targeted trader support programs to mitigate noise pollution’s adverse effects and promote sustainable urban commerce.Publication Changes of microorganism composition in fresh and stored bee pollen from Southern Germany(2021) Friedle, Carolin; D’Alvise, Paul; Schweikert, Karsten; Wallner, Klaus; Hasselmann, MartinAnalysis of plant pollen can provide valuable insights into the existing spectrum of microorganisms in the environment. When harvesting bee-collected pollen as a dietary supplement for human consumption, timely preservation of the freshly collected pollen is fundamental for product quality. Environmental microorganisms contained in freshly collected pollen can lead to spoilage by degradation of pollen components. In this study, freshly collected bee pollen was sampled at different locations and stored under various storage conditions to examine the hypothesis that storage conditions may have an effect on the composition of microorganisms in pollen samples. The samples were analyzed using 16S and 18S amplicon sequencing and characterized by palynological analysis. Interestingly, the bacterial communities between pollen samples from different locations varied only slightly, whereas for fungal community compositions, this effect was substantially increased. Further, we noticed that fungal communities in pollen are particularly sensitive to storage conditions. The fungal genera proportion Cladosporium and Mycosphaerella decreased, while Zygosaccharomyces and Aspergillus increased during storage. Aspergillus and Zygosaccharomyces fractions increased during storage at 30 °C, which could negatively impact the pollen quality if it is used as a dietary supplement.Publication The chicken gut microbiome in conventional and alternative production systems(2025) Cheng, Yu-Chieh; Krieger, Margret; Korves, Anna-Maria; Camarinha‑Silva, AméliaThe poultry gut microbiome plays a key role in nutrient digestion, immune function, and overall health. Differences among various farming systems, including conventional, antibiotic-free, free-range, and organic systems, influence microbial composition and function through variations in diet, genetic selection, environmental exposure, and antibiotic use. Conventional systems typically rely on formulated diets and controlled housing conditions, often with routine antimicrobial use. In contrast, organic systems emphasize natural feed ingredients, including roughage, outdoor access, and strict limitations on the use of antibiotics. These divergent practices shape the gut microbiota differently, with organic systems generally associated with greater exposure to environmental microbes and, consequently, greater microbial diversity. However, the implications of this increased diversity for poultry health and performance are complex, as organic systems may also carry a higher risk of pathogen exposure. This review summarizes current findings on the chicken gut microbiome across conventional and alternative production systems (antibiotic-free, free-range, and organic), focusing on microbial diversity, functional potential, and disease resilience. The need for standardized methodologies and consistent nomenclature in microbiome research is also discussed to improve comparability across studies. Understanding how production systems influence the gut microbiota is essential for improving poultry health and productivity while addressing challenges related to antimicrobial resistance and sustainable farming practices.Publication Cow’s microbiome from antepartum to postpartum: a long-term study covering two physiological challenges(2022) Tröscher-Mußotter, Johanna; Deusch, Simon; Borda-Molina, Daniel; Frahm, Jana; Dänicke, Sven; Camarinha-Silva, Amélia; Huber, Korinna; Seifert, JanaLittle is known about the interplay between the ruminant microbiome and the host during challenging events. This long-term study investigated the ruminal and duodenal microbiome and metabolites during calving as an individual challenge and a lipopolysaccharide-induced systemic inflammation as a standardized challenge. Strong inter- and intra-individual microbiome changes were noted during the entire trial period of 168 days and between the 12 sampling time points. Bifidobacterium increased significantly at 3 days after calving. Both challenges increased the intestinal abundance of fiber-associated taxa, e.g., Butyrivibrio and unclassified Ruminococcaceae. NMR analyses of rumen and duodenum samples identified up to 60 metabolites out of which fatty and amino acids, amines, and urea varied in concentrations triggered by the two challenges. Correlation analyses between these parameters indicated a close connection and dependency of the microbiome with its host. It turns out that the combination of phylogenetic with metabolite information supports the understanding of the true scenario in the forestomach system. The individual stages of the production cycle in dairy cows reveal specific criteria for the interaction pattern between microbial functions and host responses.Publication Distinct transport mechanism in Candida albicans methylammonium permeases(2020) Neuhäuser, B.It is crucial for the growth and development of an organism whether ammonium is transported across its membranes in a form of NH4+ or NH3. The transport of both molecules follows different pH-dependent gradients across membranes and transport of both substrates differentially affects the internal and external pH. As a consequence, they directly influence the physiology and organism development. CaMep2 from Candida albicans shows a dual transceptor function in ammonium transport and sensing. CaMep2 senses low ammonium availability and induces filamentous growth. CaMep1, by contrast, is only active in transport, but not involved in ammonium signaling. Here, both proteins were heterologously expressed in Xenopus laevis oocytes. This study identified electrogenic NH4+ transport by CaMep1 and electroneutral NH3 transport by CaMep2, which might be a prerequisite for the induction of pseudohyphal growth.Publication Effects of dietary phosphorus and myo-inositol supplementation on NaPi-IIb and TRPV6 protein expression in duodenal apical membranes of laying hens from two strains(2026) Shomina, Nataliia; Sommerfeld, Vera; Hanauska, Anna; Oster, Michael; Rodehutscord, Markus; Huber, KorinnaPhosphorus (P) and calcium (Ca) absorption in the intestine is mediated by apical brush border membrane (BBM) transporters, including the sodium-dependent phosphate (Pi) transporter NaPi-IIb and the Ca²⁺-selective channel TRPV6. Both are highly expressed in the duodenum and exhibit dietary adaptability; yet little is known about how this adaptability varies with strain and age in laying hens. The present study examined the effects of dietary mineral P renunciation and myo-inositol (MI) supplementation on NaPi-IIb and TRPV6 protein expression in the duodenal BBM of Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) hens. Two independent feeding trials were conducted: hens received diets either with or without mineral P supplementation (wk 15 - 19 and 20 – 24), or with graded MI levels (0 - 3 g/kg; wk 26 – 30). At the end of each period, hens were euthanized and protein expression of NaPi-IIb and TRPV6 in duodenal BBM was studied by western blotting. Statistical correlation with additional traits of mineral metabolism was analyzed. An immunoreactive NaPi-IIb band was detected at ∼ 45 kDa; therefore, all results reported here refer to this NaPi-IIb fragment. Mineral P renunciation did not affect NaPi-IIb fragment or TRPV6 expression in either hen strain. In LSL hens NaPi-IIb fragment expression increased from wk 19 to wk 24, whereas in LB hens it remained unchanged. NaPi-IIb fragment expression was positively associated with duodenal phosphatase activity and plasma estradiol. TRPV6 expression tended to reduce in LB hens from wk 19 to wk 24, but remained stable in LSL hens. TRPV6 expression was positively associated with duodeno-jejunal P content. MI supplementation upregulated NaPi-IIb fragment expression in LB, but downregulated it in LSL hens with high dietary MI levels, without affecting TRPV6. These findings demonstrate strain-dependent regulatory patterns of duodenal expression of NaPi-IIb fragment and TRPV6 in response to physiological stage and MI supply, indicating that mineral feeding strategies may benefit from genotype-specific consideration, whereas the mechanisms underlying MI-related effects require further clarification.Publication Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum(2022) Schlemmer, Timo; Lischka, Richard; Wegner, Linus; Ehlers, Katrin; Biedenkopf, Dagmar; Koch, AlineNumerous reports have shown that incorporating a double-stranded RNA (dsRNA)-expressing transgene into plants or applying dsRNA by spraying it onto their leaves successfully protects them against invading pathogens exploiting the mechanism of RNA interference (RNAi). How dsRNAs or siRNAs are transferred between donor host cells and recipient fungal cells is largely unknown. It is speculated that plant extracellular vesicles (EVs) function as RNA shuttles between plants and their pathogens. Recently, we found that EVs isolated from host-induced gene silencing (HIGS) or spray-induced gene silencing (SIGS) plants contained dsRNA-derived siRNAs. In this study, we evaluated whether isolated EVs from dsRNA-sprayed barley ( Hordeum vulgare ) plants affected the growth of the phytopathogenic ascomycete Fusarium graminearum . Encouraged by our previous finding that dropping barley-derived EVs on F. graminearum cultures caused fungal stress phenotypes, we conducted an in vitro growth experiment in microtiter plates where we co-cultivated F. graminearum with plant EVs isolated from dsRNA-sprayed barley leaves. We observed that co-cultivation of F. graminearum macroconidia with barley EVs did not affect fungal growth. Furthermore, plant EVs containing SIGS-derived siRNA appeared not to affect F. graminearum growth and showed no gene silencing activity on F. graminearum CYP51 genes. Based on our findings, we concluded that either the amount of SIGS-derived siRNA was insufficient to induce target gene silencing in F. graminearum, indicating that the role of EVs in SIGS is minor, or that F. graminearum uptake of plant EVs from liquid cultures was inefficient or impossible.Publication Fecal cortisol metabolites indicate increased stress levels in horses during breaking-in: a pilot study(2025) Krieber, Julia; Nowak, Aurelia C.; Geissberger, Jakob; Illichmann, Oliver; Macho-Maschler, Sabine; Palme, Rupert; Dengler, Franziska; Madigan, JohnSport horses are frequently exposed to situations that were identified as stressors, indicated by an increased cortisol release, which might impair animal welfare. However, while many studies deal with the impact of exercise, transport, and competition on stress in horses, little is known about the early phase of a horse’s sports career and studies investigating the stress level of young horses during breaking-in are limited. To compare stress levels in unridden horses, horses during breaking-in, and horses in training we collected fecal samples of young, unridden horses ( n = 28) and of horses in different training stages ( n = 13) and measured fecal cortisol metabolite (FCM) concentrations. Our preliminary results showed that FCM concentrations of unridden horses were significantly lower than those of horses in training (Mann–Whitney rank sum test, p < 0.001). Particularly in the first year under the saddle FCMs were significantly higher than in unridden horses (one way ANOVA + post hoc Holm–Sidak test, p < 0.05), with a tendency for FCM levels to decrease with time in training. Furthermore, we observed that within the group of ridden horses there was a larger range of variability in FCM levels, suggesting individual variations regarding their ability to deal with (training-induced) stress. These results indicate that breaking-in is a stressful time for young horses, underlining the importance of carrying out the initial training as carefully as possible.Publication Food fermentation: an essential unit operation towards secure, sustainable, safe, and sustaining food systems(2025) Gänzle, Michael G.; Seifert, Jana; Weiss, Jochen; Zijlstra, Ruurd T.Publication Food-related well-being in times of crisis: A study on Syrian refugees in Germany(2024) Al-Sayed, Lubana; Bieling, ClaudiaForced migration, stemming from conflict, persecution, or other compelling circumstances, often thrusts individuals into unfamiliar territories, presenting a multitude of challenges. These challenges extend beyond mere physical displacement, disrupting social, economic, and cultural norms. The Syrian forced migration following the Arab Spring in 2011 emerged as the world’s largest humanitarian crisis, displacing 14 million people from their homes. Throughout their journey to safety, refugees encounter peril, uncertainty, trauma, and loss. Even upon arrival at their destination, whether in neighbouring countries or distant lands, refugees confront intricate systems of aid, bureaucracy, and integration, all while grappling with the profound impacts of their experiences. Among the array of challenges faced, food insecurity emerges as a critical concern, affecting not only physical health but also overall well-being. Moreover, when migrating to host countries vastly different from their native regions, individuals encounter unique obstacles in accessing local food environments and possess limited knowledge of available food resources and services. These challenges may be exacerbated by language barriers, currency disparities, and unfamiliarity with local food products. Collectively, these factors significantly shape refugees’ overall well-being, particularly concerning food. However, despite the significance of food-related well-being, substantial gaps persist in the literature. There is a notable lack of understanding regarding refugees’ subjective perceptions of food-related well-being, which are deeply rooted in their experiences during conflict, migration, and post-arrival in the host country. Additionally, little is known about how refugees acquire food-related knowledge when relocating to host countries vastly different from their own, and the role of this knowledge in enhancing their well-being and that of their relatives in crisis areas. Therefore, this research aims to address these knowledge gaps by exploring the hedonic, psychological, and social well-being of refugees concerning food, and by investigating the food-related knowledge networks in which refugees are involved. To guide this investigation, a conceptual framework is developed, integrating the three dimensions of well-being (hedonic, psychological, and social) with the three motivations for food intake (functional, symbolic, and hedonic). The empirical work is conducted in two periods, August to October 2017 and April to June 2018, utilizing both qualitative and quantitative methods among Syrian refugees in Stuttgart, Germany. This work comprises a total of three research articles, with the first two being published in peer-reviewed international journals and the third one submitted. The first article (chapter 3) describes the hedonic dimension of well-being, specifically focusing on the affective and cognitive components within a dietary context. The main hypothesis posits that hedonic well-being is augmented when food successfully fulfils both its functional and hedonic goals. The findings revealed that interviewees associated food with a range of positive and negative emotions. Negative affects were predominantly linked to the challenges the respondents faced, such as sadness stemming from family dispersion, nostalgia, psychological discomfort, as well as the conditions of their current living situations, such as stress, fatigue, anxiety, and loneliness. Associations between food and life satisfaction were found to be intertwined with various factors, including food availability and accessibility, physical health and bodily functioning, emotions, social interactions, and overall life satisfaction. Furthermore, a good and happy food-related existence was linked to various characteristics at each stage of food interaction (purchasing, preparing, eating and post-eating). Adhering to a nutritious diet with the aim of improving physical health, enhancing psychological well-being through positive emotions, and fostering social support and stability emerged as primary factors in improving refugees’ well-being. Equally significant were the sensory experiences of eating and the pleasurable emotions experienced when sharing meals with others. The second article (Chapter 4) delves into the psychological and social dimensions of food-related well-being among refugees. It highlights how food-related well-being varies across different stages of the migration journey—specifically, during wartime, along the migration route, and after arriving in the host country. During wartime, the availability and accessibility of food are crucial factors. Amidst the challenges of conflict, ensuring access to food becomes paramount for survival. Conversely, during the migration journey itself, food often takes a backseat to the primary objective of reaching a safe destination. Basic necessities become the priority for refugees as they navigate their way to safety. Upon arrival in the host country, various psychological and social factors come into play, significantly influencing refugees’ food-related well-being, such as living conditions, the local food environment, and the social practices surrounding food. This article highlights the profound connection between food and one’s cultural roots, which serves to mitigate the adverse effects of exile on individuals’ lives. The third paper (Chapter 5) is motivated by the insights gleaned from the findings of the first and second articles, which highlight the critical role of sharing food-related knowledge in bolstering refugee food security and improving their overall well-being in relation to food. As refugees encounter a new food environment upon resettling in a host country, they actively engage in constructing and restructuring their social networks to obtain vital information about available resources in their new surroundings. Therefore, the third article explores the food-related knowledge networks that refugees are part of, shedding light on their structure and their role in enhancing their well-being. The findings revealed two types of networks: those within the same ethnic groups and those encompassing multiple ethnicities (primarily Germans and Arabs), exhibiting significant differences in network measures. Furthermore, it identified the primary sources of information, the content of the shared knowledge, and its mode of transmission. Additionally, the paper suggests measures to enhance the transmission of food-related knowledge among refugees and between refugees and their families in crisis areas. These three articles were collectively further discussed in the concluding section (Chapter 6), where I assessed the connections of the proposed framework integrating the various dimensions of well-being with food goals. This assessment drew upon the empirical findings of this research, aiming to provide a comprehensive understanding of the interplay between food-related well-being and the multifaceted aspects of refugees’ experiences. Furthermore, I proposed a new definition for food-related well-being in the context of conflict and displacement. Finally, I examined the main factors influencing refugees’ food-related well-being, offering insights into potential avenues for intervention and support.Publication Functionality of the Na+-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling(2024) Hau, Jann-Louis; Schleicher, Lena; Herdan, Sebastian; Simon, Jörg; Seifert, Jana; Fritz, Günter; Steuber, JuliaMembers of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii , the Na + -translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR . Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.Publication Genetic and non‐genetic factors influencing KLH binding natural antibodies and specific antibody response to Newcastle disease in Kenyan chicken populations(2022) Miyumo, Sophie; Wasike, Chrilukovian B.; Ilatsia, Evans D.; Bennewitz, Jörn; Chagunda, Mizeck G. G.This study aimed at investigating the influence of genetic and non‐genetic factors on immune traits to inform on possibilities of genetic improvement of disease resistance traits in local chicken of Kenya. Immune traits such as natural and specific antibodies are considered suitable indicators of an individual's health status and consequently, used as indicator traits of disease resistance. In this study, natural antibodies binding to Keyhole Limpet Hemocyanin (KLH‐NAbs) was used to measure general disease resistance. Specific antibodies binding to Newcastle disease virus (NDV‐IgG) post vaccination was used to measure specific disease resistance. Titers of KLH‐NAbs isotypes (KLH‐IgM, KLH‐IgG and KLH‐IgA) and NDV‐IgG were measured in 1,540 chickens of different ages ranging from 12 to 56 weeks. A general linear model was fitted to determine the effect of sex, generation, population type, phylogenetic cluster, line, genotype and age on the antibody traits. A multivariate animal mixed model was fitted to estimate heritability and genetic correlations among the antibody traits. The model constituted of non‐genetic factors found to have a significant influence on the antibody traits as fixed effects, and animal and residual effects as random variables. Overall mean (±SE) concentration levels for KLH‐IgM, KLH‐IgG, KLH‐IgA and NDV‐IgG were 10.33 ± 0.04, 9.08 ± 0.02, 6.00 ± 0.02 and 10.12 ± 0.03, respectively. Sex, generation and age (linear covariate) significantly (p < 0.05) influenced variation across all the antibody traits. Genotype effects (p < 0.05) were present in all antibody traits, apart from KLH‐IgA. Interaction between generation and line was significant (p < 0.05) in KLH‐IgM and NDV‐IgG while nesting phylogenetic cluster within population significantly (p < 0.05) influenced all antibody traits, apart from KLH‐IgA. Heritability estimates for KLH‐IgM, KLH‐IgG, KLH‐IgA and NDV‐IgG were 0.28 ± 0.08, 0.14 ± 0.06, 0.07 ± 0.04 and 0.31 ± 0.06, respectively. There were positive genetic correlations (0.40–0.61) among the KLH‐NAbs while negative genetic correlations (−0.26 to −0.98) were observed between the KLH‐NAbs and NDV‐IgG. Results from this study indicate that non‐genetic effects due to biological and environmental factors influence natural and specific antibodies and should be accounted for to reduce bias and improve accuracy when evaluating the traits. Subsequently, the moderate heritability estimates in KLH‐IgM and NDV‐IgG suggest selection possibilities for genetic improvement of general and specific immunity, respectively, and consequently disease resistance. However, the negative correlations between KLH‐NAbs and NDV‐IgG indicate the need to consider a suitable approach that can optimally combine both traits in a multiple trait selection strategies.Publication Genomic dissection of the correlation between milk yield and various health traits using functional and evolutionary information about imputed sequence variants of 34,497 German Holstein cows(2024) Schneider, Helen; Krizanac, Ana-Marija; Falker-Gieske, Clemens; Heise, Johannes; Tetens, Jens; Thaller, Georg; Bennewitz, JörnBackground: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. Results: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits’ genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets’ high effect. Conclusion: Our results confirm the connection of milk production and health traits in dairy cattle via the animals’ metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits’ connection in more detail.Publication Haemotrophic mycoplasmas infecting pigs: a review of the current knowledge(2024) Ade, Julia; Eddicks, Matthias; Ritzmann, Mathias; Hoelzle, Katharina; Hoelzle, Ludwig E.; Stadler, Julia; Highland, Margaret A.Haemotrophic mycoplasmas (haemoplasmas) are a group of highly specific and adapted bacteria. Three different haemoplasma species in pigs are known to date: Mycoplasma ( M .) suis , M. parvum and ‘ Candidatus ( Ca .) M. haemosuis’. Even though these bacteria have been known in pig farming for a long time, it is difficult to draw general conclusions about the relevance of their infections in pigs. This review summarizes the current knowledge on the three porcine haemoplasma species with regards to clinical and pathological descriptions, pathobiology, epidemiology and diagnostics as well as prevention and therapy. Overall, it is clear that considerably more data are available for M. suis than for the other two species, but generally, porcine haemoplasmas were found to be highly prevalent all over the world. Mycoplasma suis is the most virulent species, causing acute infectious anaemia in pigs (IAP), whereas M. parvum usually results in chronic and subclinical infections associated with performance losses. Little is known about the clinical significance of the recently discovered third porcine species ‘ Ca . M. haemosuis’. So far, the described pathogenic mechanisms mainly include direct destruction of erythrocytes via adhesion, invasion, eryptosis and nutrient scavenging, indirect erythrocyte lysis due to immune-mediated events and immune dysregulation processes. A review of published diagnostic data confirms PCR assays as the current standard method, with various cross-species and species-specific protocols. Overall, there is a need for further examination to obtain valuable insights for practical application, specifically regarding the importance of subclinical infections in naturally infected animals. An essential requirement for this will be to gain a more comprehensive understanding of the mechanisms operating between the host and the pathogen.Publication Hemotrophic mycoplasmas - vector transmission in livestock(2024) Arendt, Mareike; Stadler, Julia; Ritzmann, Mathias; Ade, Julia; Hoelzle, Katharina; Hoelzle, Ludwig E.; Dozois, Charles M.Hemotrophic mycoplasmas (HMs) are highly host-adapted and specialized pathogens infecting a wide range of mammals including farm animals, i.e., pigs, cattle, sheep, and goats. Although HMs have been known for over 90 years, we still do not know much about the natural transmission routes within herds. Recently, it has been repeatedly discussed in publications that arthropod vectors may play a role in the transmission of HMs from animal to animal. This is mainly since several HM species could be detected in different potential arthropod vectors by PCR. This review summarizes the available literature about the transmission of bovine, porcine, ovine, and caprine HM species by different hematophagous arthropod vectors. Since most studies are only based on the detection of HMs in potential vectors, there are rare data about the actual vector competence of arthropods. Furthermore, there is a need for additional studies to investigate, whether there are biological vectors in which HMs can multiply and be delivered to new hosts.Publication Historic insights and future potential in wheat elaborated using a diverse cultivars collection and extended phenotyping(2025) El Hassouni, Khaoula; Afzal, Muhammad; Boeven, Philipp H. G.; Dornte, Jost; Koch, Michael; Pfeiffer, Nina; Pfleger, Franz; Rapp, Matthias; Schacht, Johannes; Spiller, Monika; Sielaff, Malte; Tenzer, Stefan; Thorwarth, Patrick; Longin, C. Friedrich H.Wheat is one of the most important staple crops worldwide. Wheat breeding mainly focused on improving agronomy and techno-functionality for bread or pasta production, but nutrient content is becoming more important to fight malnutrition. We therefore investigated 282 bread wheat cultivars from seven decades of wheat breeding in Central Europe on 63 different traits related to agronomy, quality and nutrients in multiple field environments. Our results showed that wheat breeding has tremendously increased grain yield, resistance against diseases and lodging as well as baking quality across last decades. By contrast, mineral content slightly decreased without selection on it, probably due to its negative correlation with grain yield. The significant genetic variances determined for almost all traits show the potential for further improvement but significant negative correlations among grain yield and baking quality as well as grain yield and mineral content complicate their combined improvement. Thus, compromises in improvement of these traits are necessary to feed a growing global population.Publication Impact of high-pressure processing on the bioactive compounds of milk - a comprehensive review(2024) Siddiqui, Shahida Anusha; Khan, Sipper; Bahmid, Nur Alim; Nagdalian, Andrey Ashotovich; Jafari, Seid Mahdi; Castro-Muñoz, RobertoHigh-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400–600 MPa and exposure times of 1–5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and β-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100–250 MPa with time dependency while decreasing up to 70% at 400–600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350–400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components.Publication Impacts of different light spectra on CBD, CBDA and terpene concentrations in relation to the flower positions of different cannabis Sativa L. strains(2022) Reichel, Philipp; Munz, Sebastian; Hartung, Jens; Kotiranta, Stiina; Graeff-Hönninger, SimoneCannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country-specific regulations. The plant has gained interest due to its medically important secondary metabolites, cannabinoids and terpenes. Besides biotic and abiotic stress factors, secondary metabolism can be manipulated by changing light quality and intensity. In this study, three morphologically different cannabis strains were grown in a greenhouse experiment under three different light spectra with three real light repetitions. The chosen light sources were as follows: a CHD Agro 400 ceramic metal-halide lamp with a sun-like broad spectrum and an R:FR ratio of 2.8, and two LED lamps, a Solray (SOL) and an AP67, with R:FR ratios of 13.49 and 4, respectively. The results of the study indicated that the considered light spectra significantly influenced CBDA and terpene concentrations in the plants. In addition to the different light spectra, the distributions of secondary metabolites were influenced by flower positions. The distributions varied between strains and indicated interactions between morphology and the chosen light spectra. Thus, the results demonstrate that secondary metabolism can be artificially manipulated by the choice of light spectrum, illuminant and intensity. Furthermore, the data imply that, besides the cannabis strain selected, flower position can have an impact on the medicinal potencies and concentrations of secondary metabolites.
